- 相關(guān)推薦
初一數(shù)學建模論文模板
初一數(shù)學建模論文模板1
一、在高等數(shù)學教學中運用數(shù)學建模思想的重要性
(1)將教材中的數(shù)學知識運用現(xiàn)實生活中的對象進行還原,讓學生樹立數(shù)學知識來源于現(xiàn)實生活的思想觀念。
(2)數(shù)學建模思想要求學生能夠通過運用相應的數(shù)學工具和數(shù)學語言,對現(xiàn)實生活中的特定對象的信息、數(shù)據(jù)或者現(xiàn)象進行簡化,對抽象的數(shù)學對象進行翻譯和歸納,將所求解的數(shù)學問題中的數(shù)量關(guān)系運用數(shù)學關(guān)系式、數(shù)學圖形或者數(shù)學表格等形式進行表達,這種方式有利于培養(yǎng)、鍛煉學生的數(shù)學表達能力。
(3)在運用數(shù)學建模思想獲得實際的答案后,需要運用現(xiàn)實生活對象的相關(guān)信息對其進行檢驗,對計算結(jié)果的準確性進行檢驗和確定。該流程能夠培養(yǎng)學生運用合理的數(shù)學方法對數(shù)學問題進行主動性、客觀性以及辯證性的分析,最后得到最有效的解決問題的方法。
二、高等數(shù)學教學中數(shù)學建模能力的培養(yǎng)策略
1.教師要具備數(shù)學建模思想意識
在對高等數(shù)學進行教學的過程中,培養(yǎng)學生運用數(shù)學建模思想,首先教師要具備足夠的數(shù)學建模意識。教師在進行高等數(shù)學教學之前,首先,要對所講數(shù)學內(nèi)容的相關(guān)實例進行查找,有意識的實現(xiàn)高等數(shù)學內(nèi)容和各個不同領(lǐng)域之間的聯(lián)系;其次,教師要實現(xiàn)高等數(shù)學教學內(nèi)容與教學要求的轉(zhuǎn)變,及時的更新自身的教學觀念和教學思想。例如,教師細心發(fā)現(xiàn)現(xiàn)實生活中的小事,然后運用這些小事建造相應的數(shù)學模型,這樣不僅有利于營造活躍的課堂環(huán)境,而且還有利于激發(fā)學生的學習興趣。
2.實現(xiàn)數(shù)學建模思想和高等數(shù)學教材的互相結(jié)合
教師在講解高等數(shù)學時,對其中能夠引入數(shù)學模型的章節(jié),要構(gòu)建相關(guān)的數(shù)學模型,對其提出相應的問題,進行分析和處理。在該基礎(chǔ)上,提出假設(shè),實現(xiàn)數(shù)學模型的完善。教師在高等數(shù)學的教學中融入建模意識,讓學生潛移默化的'感受到建模思想在高等數(shù)學教學中應用的效果。這樣有利于提高學生數(shù)學知識的運用能力和學習興趣。例如,在進行教學時,針對學生所學專業(yè)的特點,選擇科學、合理的數(shù)學案例,運用數(shù)學建模思想對其進行相應的加工后,作為高等數(shù)學講授的應用例題。這樣不僅能夠讓學生發(fā)現(xiàn)數(shù)學發(fā)揮的巨大作用,而且還能夠有效的提高學生的數(shù)學解題水平。另外,數(shù)學課結(jié)束后,轉(zhuǎn)變以往的作業(yè)模式,給學生布置一些具有專業(yè)性、數(shù)學性的習題,讓學生充分利用網(wǎng)絡(luò)資源,自主建立數(shù)學模型,有效的解決問題。
3.理清高等數(shù)學名詞的概念
高等數(shù)學中的數(shù)學概念是根據(jù)實際需要出現(xiàn)的,所以在數(shù)學的教學中,教師要引起從實際問題中提取數(shù)學概念的整個過程,對學生應用數(shù)學的興趣進行培養(yǎng)。例如在高等數(shù)學
教材中,導數(shù)和定積分是其中的比較重要的概念,因此,教師在進行教學時,要引導學生理清這兩個的概念。比如導數(shù)概念是由幾何曲線中的切線斜率引導出來的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?/p>
4.加強數(shù)學應用問題的培養(yǎng)
高等數(shù)學中,主要有以下幾種應用問題:
(1)最值問題
在高等數(shù)學教材中,最值問題是導數(shù)應用中最重要的問題。教師在教學過程中通過對最值問題的解題步驟進行歸納,能夠有效地將數(shù)學建模的基本思想進行反映。因此,在對這部分內(nèi)容進行教學時,要增加例題,加大學生的練習,開拓學生的思維,讓學生熟練掌握最值問題的解決辦法。
(2)微分方程
在微分方程的教學中運用數(shù)學建模思想,能夠有效地解決實際問題。微分方程所構(gòu)建的數(shù)學模型不具有通用的規(guī)則。首先,要確定方程中的變量,對變量和變化率、微元之間的關(guān)系進行分析,然后運用相關(guān)的物理理論、化學理論或者工程學理論對其進行實驗,運用所得出的定理、規(guī)律來構(gòu)建微分方程;其次,對其進行求解和驗證結(jié)果。微分方程的概念主要從實際引入,堅持由淺入深的原則,來對現(xiàn)實問題進行解決。例如,在對學生講解外有引力定律時,讓學生對萬有引力的提出、猜想進行探究,了解到在其發(fā)展的整個過程中,數(shù)學發(fā)揮著十分重要的作用。
(3)定積分
微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學中滲入定積分概念,讓學生對定積分概念的意義進行分析和了解,這樣有利于在對實際問題進行解決時,樹立“欲積先分”意識,意識到運用定積分是解決微元實際問題的重要方法。教師在布置作業(yè)題時,要增加該問題的實例。
三、結(jié)語
總之,在高等數(shù)學中對學生的數(shù)學建模能力進行培養(yǎng),讓學生在解題的過程中運用數(shù)學建模思想和數(shù)學建模方法,能夠有效地激發(fā)學生的學習興趣,提高學生的分析、解決問題的能力以及提高學生數(shù)學知識的運用能力。
初一數(shù)學建模論文模板2
數(shù)學,源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應用數(shù)學的發(fā)展,使數(shù)學日益滲透到社會各個領(lǐng)域.中考實際應用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學課程標準指出,教師在教學中應引導學生從實際背景中理清數(shù)學關(guān)系、把握變化規(guī)律,能從實際問題中建立數(shù)學模型.教師要為學生創(chuàng)造用數(shù)學的氛圍,引導學生參與自主學習、自主探索、自主提問、自主解決,體驗做數(shù)學的過程,從而提高解決實際問題的能力.
一、影響數(shù)學建模教學的成因探析
一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學離不開學生“做”數(shù)學的過程,因而教師在教學中要留有讓學生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學生缺乏信任,由“引導者”變?yōu)椤肮噍斦摺,將解題過程直接教給學生,影響了學生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學,需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學,激發(fā)學生的興趣,啟發(fā)學生進行思考,誘發(fā)學生進行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認為建模就是解應用題,或重生活味輕數(shù)學味,或使討論活動流于形式.三是學生的抽象能力較差.在建模教學中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學生經(jīng)歷閱讀提取有用的信息,但是部分學生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學生成功建模.
二、數(shù)學建模教學的有效原則
1.自主探索原則.
學生長期處于師講、生聽的教學模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學中,教師要為學生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學生手腦并用,在探索、交流、操作中提高解決問題的能力.
2.因材施教原則.
教師要著眼于學生原有的認知結(jié)構(gòu),要貼近學生的最近發(fā)展區(qū),引導他們從舊知的角度思考,找出問題的`解決方法。
3.可接受性原則.
數(shù)學建模內(nèi)容的設(shè)計,要符合學生的年齡特點和認知能力,能讓學生理解所探究的內(nèi)容.若設(shè)計的問題不切實際,往往會扼殺學生的興趣,教師要密切聯(lián)系教學內(nèi)容、生活實際,讓學生有能力解決問題.
三、初中數(shù)學建模教學的幾種模式
1.自學討論式.
“先學后教”改變了傳統(tǒng)教學中“師講生聽”、“師說生練”的模式,在教師的導學、導疑、導思中激發(fā)學生的學習興趣,引發(fā)學生的積極思考,讓他們在交流中思想不斷碰撞,形成新觀點,從而自身認知水平得到提高.教師要通過創(chuàng)設(shè)問題情境導學,引發(fā)學生的探究.例如,如圖,在河岸L的同側(cè)有M、N兩個村莊,現(xiàn)擬在河岸邊修一座水泵站P,要求使管道PM、PN所用的水管最短,另修一碼頭Q,要求碼頭到M、N兩村的距離相等,試畫出P、Q的位置.在提出問題的基礎(chǔ)上,學生通過選點、測量,開展交流討論.學生1認為,是不是和異側(cè)相同?學生2認為,如果M、N在直線L的異側(cè),連接MN即為最短.學生3認為,在同側(cè)的話,可以根據(jù)軸對性的性質(zhì),將之轉(zhuǎn)移為異側(cè).學生4認為,這有點像照鏡子.這樣,學生將實際問題轉(zhuǎn)化為軸對稱的知識解決,在交流中彼此分享、相互促進、相互提高.
2.引導探究式.
教師提出問題,讓學生通過觀察、探究提出自己的猜想,在推理、論證的基礎(chǔ)上獲得結(jié)論、掌握規(guī)律.例如,某景區(qū)團體購買公園門票價為1~50人的13元/張,50~100人的11元/張,100人以上9元/張.甲團少于50人,乙團人數(shù)不超過100人,兩團共計應付票費1392元.若組成一個團體購票,應付1080元.(1)乙團人數(shù)是否也少于50人,為什么?(2)求甲乙兩團各有多少人?學生猜想乙團人數(shù)少于50人,進而推算兩團人數(shù)會少于100人,團購價應少于1300元,與1392元矛盾,因而乙團人數(shù)應不少于50人,不超過100人.
3.活動參與模式.
教師提出問題,引發(fā)學生小組活動探究,進行捜集數(shù)據(jù)、整理分析,然后解決問題.例如,某件商品的售價從原來的每件400元經(jīng)兩次調(diào)價后調(diào)至每件324元.經(jīng)調(diào)查,該商品每降價2元,即可多銷售10件,若該商場原來每月可銷售500件,那么經(jīng)過兩次調(diào)價后,每月可銷售該商品多少件?學生先計算每次的降價率為10%,然后根據(jù)“件數(shù)×單價=銷售額”列出方程.
總之,數(shù)學建模教學,有利于學生將實際問題轉(zhuǎn)化為數(shù)學模型來解,能夠提高學生分析、解決問題的能力。
【初一數(shù)學建模論文】相關(guān)文章:
數(shù)學建模論文的致謝詞09-04
數(shù)學建模的論文格式10-16
數(shù)學建模論文格式10-08
數(shù)學建模論文格式規(guī)范10-27
數(shù)學建模論文格式要求06-17
數(shù)學教學論文的格式08-18
初一數(shù)學小結(jié)08-27
數(shù)學與應用數(shù)學專業(yè)論文提綱(2)05-23
數(shù)學小論文優(yōu)秀范文09-08
數(shù)學論文開題報告08-20