初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
在平凡的學(xué)習(xí)生活中,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)是傳遞信息的基本單位,知識(shí)點(diǎn)對(duì)提高學(xué)習(xí)導(dǎo)航具有重要的作用。為了幫助大家更高效的學(xué)習(xí),以下是小編收集整理的初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。
第一章 分式
1 分式及其基本性質(zhì)
分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變
2 分式的運(yùn)算
(1)分式的乘除
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2) 分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變?yōu)橥帜傅姆质,再加減
3 整數(shù)指數(shù)冪的加減乘除法
4 分式方程及其解法
第二章 反比例函數(shù)
1 反比例函數(shù)的表達(dá)式、圖像、性質(zhì)
圖像:雙曲線
表達(dá)式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2 反比例函數(shù)在實(shí)際問(wèn)題中的應(yīng)用
第三章 勾股定理
1 勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方
2 勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形。
第四章 四邊形
1 平行四邊形
性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。
判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;
兩組對(duì)角分別相等的四邊形是平行四邊形;
對(duì)角線互相平分的四邊形是平行四邊形;
一組對(duì)邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2 特殊的平行四邊形:矩形、菱形、正方形
(1) 矩形
性質(zhì):矩形的四個(gè)角都是直角;
矩形的對(duì)角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定: 有一個(gè)角是直角的平行四邊形是矩形;
對(duì)角線相等的平行四邊形是矩形;
推論: 直角三角形斜邊的中線等于斜邊的一半。
(2) 菱形
性質(zhì):菱形的四條邊都相等;
菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;
菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;
對(duì)角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;
等腰梯形的兩條對(duì)角線相等;
同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。
第五章 數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差
分式方程
一、理解定義
1、分式方程:含分式,并且分母中含未知數(shù)的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的兩邊都乘以最簡(jiǎn)公分母,約去分母,化成整式方程。
(2)解這個(gè)整式方程。
(3)把整式方程的根帶入最簡(jiǎn)公分母,看結(jié)果是不是為零,使最簡(jiǎn)公分母為零的根是原方程的增根,必須舍去。
(4)寫(xiě)出原方程的根。
“一化二解三檢驗(yàn)四總結(jié)”
3、增根:分式方程的增根必須滿足兩個(gè)條件:
(1)增根是最簡(jiǎn)公分母為0;(2)增根是分式方程化成的整式方程的根。
4、分式方程的解法:
(1)能化簡(jiǎn)的先化簡(jiǎn)(2)方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程;
(3)解整式方程;(4)驗(yàn)根;
注:解分式方程時(shí),方程兩邊同乘以最簡(jiǎn)公分母時(shí),最簡(jiǎn)公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗(yàn)根。
分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。
5、分式方程解實(shí)際問(wèn)題
步驟:審題—設(shè)未知數(shù)—列方程—解方程—檢驗(yàn)—寫(xiě)出答案,檢驗(yàn)時(shí)要注意從方程本身和實(shí)際問(wèn)題兩個(gè)方面進(jìn)行檢驗(yàn)。
二、軸對(duì)稱(chēng)圖形:
一個(gè)圖形沿一條直線對(duì)折,直線兩旁的部分能夠完全重合。這條直線叫做對(duì)稱(chēng)軸;ハ嘀睾系狞c(diǎn)叫做對(duì)應(yīng)點(diǎn)。
1、軸對(duì)稱(chēng):
兩個(gè)圖形沿一條直線對(duì)折,其中一個(gè)圖形能夠與另一個(gè)圖形完全重合。這條直線叫做對(duì)稱(chēng)軸;ハ嘀睾系狞c(diǎn)叫做對(duì)應(yīng)點(diǎn)。
2、軸對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)的區(qū)別與聯(lián)系:
(1)區(qū)別。軸對(duì)稱(chēng)圖形討論的是“一個(gè)圖形與一條直線的對(duì)稱(chēng)關(guān)系”;軸對(duì)稱(chēng)討論的是“兩個(gè)圖形與一條直線的對(duì)稱(chēng)關(guān)系”。
(2)聯(lián)系。把軸對(duì)稱(chēng)圖形中“對(duì)稱(chēng)軸兩旁的部分看作兩個(gè)圖形”便是軸對(duì)稱(chēng);把軸對(duì)稱(chēng)的“兩個(gè)圖形看作一個(gè)整體”便是軸對(duì)稱(chēng)圖形。
3、軸對(duì)稱(chēng)的性質(zhì):
(1)成軸對(duì)稱(chēng)的兩個(gè)圖形全等。
(2)對(duì)稱(chēng)軸與連結(jié)“對(duì)應(yīng)點(diǎn)的線段”垂直。
(3)對(duì)應(yīng)點(diǎn)到對(duì)稱(chēng)軸的距離相等。
(4)對(duì)應(yīng)點(diǎn)的連線互相平行。
三、用坐標(biāo)表示軸對(duì)稱(chēng)
1、點(diǎn)(x,y)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(x,-y);
2、點(diǎn)(x,y)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(-x,y);
3、點(diǎn)(x,y)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(-x,-y)。
四、關(guān)于坐標(biāo)軸夾角平分線對(duì)稱(chēng)
點(diǎn)P(x,y)關(guān)于第一、三象限坐標(biāo)軸夾角平分線y=x對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是(y,x)
點(diǎn)P(x,y)關(guān)于第二、四象限坐標(biāo)軸夾角平分線y=-x對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是(-y,-x)
(一)運(yùn)用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項(xiàng)式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。
(三)因式分解
1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過(guò)來(lái),就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個(gè)公式叫完全平方公式。
(2)完全平方式的形式和特點(diǎn)
、夙(xiàng)數(shù):三項(xiàng)
②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。
、塾幸豁(xiàng)是這兩個(gè)數(shù)的積的兩倍。
(3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。
(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。
(五)分組分解法
我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)??(a +b).
這種利用分組來(lái)分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來(lái)分解因式.
(六)提公因式法
1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式.當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符?hào),直到可確定多項(xiàng)式的公因式.
2.運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:
1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù).
2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:
、倭谐龀(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;
②嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù).
3.將原多項(xiàng)式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡(jiǎn)分式.
3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分.
4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按-1的偶次方為正、奇次方為負(fù)來(lái)處理.當(dāng)然,簡(jiǎn)單的分式之分子分母可直接乘方.
6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減.
(八)分?jǐn)?shù)的加減法
1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形.約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái).
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變.
3.一般地,通分結(jié)果中,分母不展開(kāi)而寫(xiě)成連乘積的形式,分子則乘出來(lái)寫(xiě)成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備.
4.通分的依據(jù):分式的基本性質(zhì).
5.通分的關(guān)鍵:確定幾個(gè)分式的公分母.
通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母.
6.類(lèi)比分?jǐn)?shù)的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減.
9.作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式.
(九)含有字母系數(shù)的一元一次方程
1.含有字母系數(shù)的一元一次方程
引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程ax=b(a≠0)
在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對(duì)x來(lái)說(shuō),字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學(xué)過(guò)的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零。
10.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào).
11.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分.
12.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化.
第十一章全等三角形復(fù)習(xí)
一、全等三角形
1.定義:能夠完全重合的兩個(gè)三角形叫做全等三角形。
理解:①全等三角形形狀與大小完全相等,與位置無(wú)關(guān);②一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形全等不因位置發(fā)生變化而改變。
2、全等三角形有哪些性質(zhì)
(1)全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。
理解:①長(zhǎng)邊對(duì)長(zhǎng)邊,短邊對(duì)短邊;角對(duì)角,最小角對(duì)最小角;②對(duì)應(yīng)角的對(duì)邊為對(duì)應(yīng)邊,對(duì)應(yīng)邊對(duì)的角為對(duì)應(yīng)角。
(2)全等三角形的周長(zhǎng)相等、面積相等。
(3)全等三角形的對(duì)應(yīng)邊上的對(duì)應(yīng)中線、角平分線、高線分別相等。
3、全等三角形的判定
邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫(xiě)成“SSS”)
1、性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.
2、判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。
三、學(xué)習(xí)全等三角形應(yīng)注意以下幾個(gè)問(wèn)題:
(1)要正確區(qū)分“對(duì)應(yīng)邊”與“對(duì)邊”,“對(duì)應(yīng)角”與“對(duì)角”的不同含義;
(2表示兩個(gè)三角形全等時(shí),表示對(duì)應(yīng)頂點(diǎn)的字母要寫(xiě)在對(duì)應(yīng)的位置上;
(3) “有三個(gè)角對(duì)應(yīng)相等”或“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等;
(4)時(shí)刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對(duì)頂角”
(5)截長(zhǎng)補(bǔ)短法證三角形全等。
第十二章軸對(duì)稱(chēng)
一、軸對(duì)稱(chēng)圖形
1.把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱(chēng)圖形。這條直線就是它的對(duì)稱(chēng)軸。這時(shí)我們也說(shuō)這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱(chēng)。
2.把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說(shuō)這兩個(gè)圖關(guān)于這條直線
4.軸對(duì)稱(chēng)與軸對(duì)稱(chēng)圖形的性質(zhì)
、訇P(guān)于某直線對(duì)稱(chēng)的兩個(gè)圖形是全等形。
、谌绻麅蓚(gè)圖形關(guān)于某條直線對(duì)稱(chēng),那么對(duì)稱(chēng)軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。 ③軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
、苋绻麅蓚(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱(chēng)。
、輧蓚(gè)圖形關(guān)于某條直線成軸對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱(chēng)軸上。
二、線段的垂直平分線
1.定義:經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.性質(zhì):線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等
3.判定:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上
三、用坐標(biāo)表示軸對(duì)稱(chēng)小結(jié):
1.在平面直角坐標(biāo)系中
、訇P(guān)于x軸對(duì)稱(chēng)的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);
、陉P(guān)于y軸對(duì)稱(chēng)的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等;
③關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)橫坐標(biāo)和縱坐標(biāo)互為相反數(shù);
、芘cX軸或Y軸平行的直線的兩個(gè)點(diǎn)橫(縱)坐標(biāo)的關(guān)系;
、蓐P(guān)于與直線X=C或Y=C對(duì)稱(chēng)的坐標(biāo)
點(diǎn)(x, y)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為_(kāi) (x, -y)_____.
點(diǎn)(x, y)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為_(kāi)__(-x, y)___.
2.三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等
四、(等腰三角形)知識(shí)點(diǎn)回顧
平方差公式:
平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面。②兩條數(shù)軸。③互相垂直。④原點(diǎn)重合。
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向。
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
等邊三角形的性質(zhì):
等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于600。
等邊三角形的判定:
、偃齻(gè)角都相等的三角形是等邊三角形。
、谟幸粋(gè)角是600的等腰三角形是等邊三角形。
在直角三角形中,如果一個(gè)銳角等于300,那么它所對(duì)的直角邊等于斜邊的一半。
等腰三角形的性質(zhì)
(1)等腰三角形的性質(zhì)定理及推論:
定理:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角)
推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個(gè)角都相等,并且每個(gè)角都等于60°。
(2)等腰三角形的其他性質(zhì):
①等腰直角三角形的兩個(gè)底角相等且等于45°
、诘妊切蔚牡捉侵荒転殇J角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。
、鄣妊切蔚娜呹P(guān)系:設(shè)腰長(zhǎng)為a,底邊長(zhǎng)為b,則
、艿妊切蔚娜顷P(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=
等腰三角形的判定
等腰三角形的判定定理及推論:
定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱(chēng):等角對(duì)等邊)。這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等。
推論1:三個(gè)角都相等的三角形是等邊三角形
推論2:有一個(gè)角是60°的等腰三角形是等邊三角形。
推論3:在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半。
知識(shí)點(diǎn):
一、多邊形
1、多邊形:由一些線段首尾順次連結(jié)組成的圖形,叫做多邊形。
2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。
3、多邊形的頂點(diǎn):多邊形每相鄰兩邊的公共端點(diǎn)叫做多邊形的頂點(diǎn)。
4、多邊形的對(duì)角線:連結(jié)多邊形不相鄰的兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。
5、多邊形的周長(zhǎng):多邊形各邊的長(zhǎng)度和叫做多邊形的周長(zhǎng)。
6、凸多邊形:把多邊形的任何一條邊向兩方延長(zhǎng),如果多邊形的其他各邊都在延長(zhǎng)線所得直線的問(wèn)旁,這樣的多邊形叫凸多邊形。
說(shuō)明:一個(gè)多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說(shuō)的多邊形,如果不特別聲明,都是指凸多邊形。
7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內(nèi)角,簡(jiǎn)稱(chēng)多邊形的角。
8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做多邊形的外角。
注意:多邊形的外角也就是與它有公共頂點(diǎn)的內(nèi)角的鄰補(bǔ)角。
9、n邊形的對(duì)角線共有條。
說(shuō)明:利用上述公式,可以由一個(gè)多邊形的邊數(shù)計(jì)算出它的對(duì)角線的條數(shù),也可以由一個(gè)多邊形的對(duì)角線的條數(shù)求出它的邊數(shù)。
10、多邊形內(nèi)角和定理:n邊形內(nèi)角和等于(n-2)180°。
11、多邊形內(nèi)角和定理的推論:n邊形的外角和等于360°。
說(shuō)明:多邊形的外角和是一個(gè)常數(shù)(與邊數(shù)無(wú)關(guān)),利用它解決有關(guān)計(jì)算題比利用多邊形內(nèi)角和公式及對(duì)角線求法公式簡(jiǎn)單。無(wú)論用哪個(gè)公式解決有關(guān)計(jì)算,都要與解方程聯(lián)系起來(lái),掌握計(jì)算方法。
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。
2、凸四邊形
把四邊形的任一邊向兩方延長(zhǎng),如果其他個(gè)邊都在延長(zhǎng)所得直線的同一旁,這樣的四邊形叫做凸四邊形。
3、對(duì)角線
在四邊形中,連接不相鄰兩個(gè)頂點(diǎn)的線段叫做四邊形的對(duì)角線。
4、四邊形的不穩(wěn)定性
三角形的三邊如果確定后,它的形狀、大小就確定了,這是三角形的穩(wěn)定性。但是四邊形的四邊確定后,它的形狀不能確定,這就是四邊形所具有的不穩(wěn)定性,它在生產(chǎn)、生活方面有著廣泛的應(yīng)用。
5、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、多邊形的對(duì)角線條數(shù)的計(jì)算公式
設(shè)多邊形的邊數(shù)為n,則多邊形的對(duì)角線條數(shù)為。
【初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
人教版初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)07-23
初二下冊(cè)每章數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-19
初二語(yǔ)文下冊(cè)知識(shí)點(diǎn)總結(jié)(4)09-14
初二下冊(cè)每一章數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-08
人教版初二英語(yǔ)下冊(cè)知識(shí)點(diǎn)大全04-29
人教版初二生物下冊(cè)知識(shí)點(diǎn)總結(jié)(2)11-09
人教版初二英語(yǔ)下冊(cè)知識(shí)點(diǎn)大全(2)05-24
人教版初二英語(yǔ)下冊(cè)知識(shí)點(diǎn)大全(5)09-30