- 相關(guān)推薦
平行四邊形的判定教學(xué)設(shè)計(jì)(精選14篇)
作為一名為他人授業(yè)解惑的教育工作者,常常要寫(xiě)一份優(yōu)秀的教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是一個(gè)系統(tǒng)化規(guī)劃教學(xué)系統(tǒng)的過(guò)程。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)才好呢?下面是小編幫大家整理的平行四邊形的判定教學(xué)設(shè)計(jì),希望對(duì)大家有所幫助。
平行四邊形的判定教學(xué)設(shè)計(jì) 1
教學(xué)目標(biāo):
[知識(shí)技能]:
1.探索平行四邊形的判別條件:一組對(duì)邊平行且相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形.
2.掌握應(yīng)用上面兩種判別方法對(duì)一些平行四邊形的判別進(jìn)行說(shuō)理.
[過(guò)程目標(biāo)]:
經(jīng)歷平行四邊形判別條件的探索過(guò)程。在有關(guān)活動(dòng)中發(fā)展學(xué)生的合情推理意識(shí)。使學(xué)生初步掌握說(shuō)理的基本方法。
[情感態(tài)度目標(biāo)]:
通過(guò)平行四邊形判別條件的探索,培養(yǎng)學(xué)生參與意識(shí),鼓勵(lì)學(xué)生大膽嘗試,從中獲得成功的`體驗(yàn),激發(fā)學(xué)生的學(xué)習(xí)熱情。
教學(xué)重點(diǎn):
探索平行四邊形的兩種判別方法
教學(xué)難點(diǎn):
學(xué)生合情說(shuō)理的意識(shí)及能力
教學(xué)策略與學(xué)法指導(dǎo):
[教學(xué)策略]:
本節(jié)課采用“創(chuàng)設(shè)情境,引導(dǎo)探究——?jiǎng)邮植僮,建立模型——解釋(xiě)?yīng)用,深化認(rèn)知——小結(jié)反饋,培養(yǎng)習(xí)慣——布置作業(yè),提高能力”等五個(gè)環(huán)節(jié)組成的五步探究式學(xué)習(xí)方式,并在教學(xué)中貫徹“以學(xué)定教”的原則,根據(jù)教學(xué)實(shí)際及時(shí)調(diào)整教學(xué)方案。
[學(xué)法指導(dǎo)]:引導(dǎo)學(xué)生全員參與,全過(guò)程參與,通過(guò)啟發(fā)調(diào)整激勵(lì)來(lái)體現(xiàn)教師的作用,根據(jù)學(xué)生的認(rèn)知情況和情感發(fā)展來(lái)調(diào)整整個(gè)學(xué)習(xí)活動(dòng)的梯度和層次,保證學(xué)生的認(rèn)知水平和情感體驗(yàn)分層次向前推進(jìn)。
教學(xué)過(guò)程:
一、復(fù)習(xí)回顧,了解學(xué)情
1.什么叫平行四邊形?
2.平行四邊形有哪些性質(zhì)?
(以上兩個(gè)問(wèn)題視學(xué)生掌握情況決定是否需要轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言)
二、創(chuàng)設(shè)情境,引導(dǎo)探究:
1.提出問(wèn)題:若判斷一個(gè)四邊形是平行四邊形,需要哪些條件?
(了解學(xué)生是否有自學(xué)習(xí)慣是否能說(shuō)出平行四邊形的判別方法,并不重要,可視學(xué)生回答情況決定下一步的教學(xué)策略)
三、動(dòng)手操作,建立模型:
情境一、二見(jiàn)學(xué)案相應(yīng)部分
設(shè)計(jì)意圖:與平行四邊形性質(zhì)相比較:平行四邊形的判別方法顯得更抽象一些,學(xué)生理解起來(lái)會(huì)更困難一些,讓學(xué)生通過(guò)動(dòng)手操作——實(shí)際驗(yàn)證,理論論證——概括總結(jié)這幾個(gè)步驟在學(xué)生借助圖形進(jìn)行合理推理的過(guò)程中增強(qiáng)參與意識(shí),培養(yǎng)學(xué)生探究能力,養(yǎng)成良好思維習(xí)慣,提高他們的認(rèn)知水平,設(shè)置②③步是考慮到八年級(jí)學(xué)生對(duì)幾何說(shuō)理缺乏足夠深度和廣度,力求通過(guò)探索這種特定數(shù)學(xué)活動(dòng),讓學(xué)生獲取一些經(jīng)驗(yàn)方法,逐步形成較為嚴(yán)密的說(shuō)理體系。
四、解釋?xiě)?yīng)用,深化認(rèn)知
例題及練習(xí) 見(jiàn)學(xué)案相應(yīng)部分
設(shè)計(jì)意圖:讓學(xué)生通過(guò)已有的生活經(jīng)驗(yàn)和數(shù)學(xué)知識(shí),把探索出的平行四邊形的判定條件逐步應(yīng)用于問(wèn)題的解決中去,實(shí)現(xiàn)概念理解和結(jié)論掌握的感性到理性的自然深化,以培養(yǎng)學(xué)生的思維能力為立足點(diǎn),目的在于培養(yǎng)學(xué)生多層次,多角度的思維能力。三次變式本著“由簡(jiǎn)到難,由靜到動(dòng)”的順序,一步步加大題目的開(kāi)放性,增加題目挖掘的深度和廣度,全面認(rèn)識(shí)“對(duì)角線互相平分的四邊形是平行四邊形”從而力求實(shí)現(xiàn)學(xué)生認(rèn)知的螺旋上升。
五、小結(jié)與反饋
本節(jié)課你有哪些收獲與體會(huì)
培養(yǎng)學(xué)生“學(xué)習(xí)、總結(jié)、反思、學(xué)習(xí)”的良好學(xué)習(xí)習(xí)慣。
六、布置作業(yè),提高能力
平行四邊形的判定教學(xué)設(shè)計(jì) 2
目標(biāo)設(shè)計(jì):
知識(shí)目標(biāo):
1、在對(duì)平行四邊形認(rèn)識(shí)的基礎(chǔ)上,探索平行四邊形的判定方法。
2、通過(guò)逆命題的猜想、操作驗(yàn)證、邏輯推理證明的過(guò)程,體驗(yàn)數(shù)學(xué)研究和發(fā)現(xiàn)的過(guò)程,學(xué)會(huì)數(shù)學(xué)思考的方法。
能力目標(biāo):
能綜合運(yùn)用平行四邊形的判定方法和性質(zhì)解決一些簡(jiǎn)單的問(wèn)題。
德育目標(biāo):
發(fā)展學(xué)生的合情推理能力,進(jìn)一步培養(yǎng)學(xué)生的邏輯推理能力,規(guī)范推理的書(shū)寫(xiě)格式。
重點(diǎn)、難點(diǎn):
重點(diǎn):探究并掌握平行四邊形的判定方法,能綜合運(yùn)用平行四邊形的判定解決問(wèn)題。
難點(diǎn):理解合情推理和邏輯推理的融合,書(shū)寫(xiě)規(guī)范的推理過(guò)程。
教學(xué)方法:探究式
學(xué)習(xí)方法:自主學(xué)習(xí)、合作交流
教具準(zhǔn)備:三角板、圓規(guī)、木條(兩個(gè)長(zhǎng)的'相等,兩個(gè)短的相等)、多媒體課件
方法設(shè)計(jì):
導(dǎo)入新課
1、創(chuàng)設(shè)問(wèn)題情境
有一塊平行四邊形的玻璃塊,假如不小心打碎了,聰明的師傅拿著細(xì)繩很快將原來(lái)的平行四邊形畫(huà)出來(lái)了,你知道他用的是什么方法嗎?帶著這個(gè)問(wèn)題,我們進(jìn)入今天的探索。
板書(shū)課題:平行四邊形的判定(一)
交待本節(jié)課的學(xué)習(xí)目標(biāo)。
2、回憶舊知
(1)平行四邊形的定義?
(2)平行四邊形具有哪些性質(zhì)?
(3)互逆命題的定義?
3、提出問(wèn)題,引入新知
怎樣判定一個(gè)四邊形是平行四邊形呢?當(dāng)然,我們可以根據(jù)定義:兩組對(duì)邊分別平行的四邊形是平行四邊形來(lái)判定。還有其他的判定方法嗎?本節(jié)課我們共同研究這個(gè)問(wèn)題。
探究新知
一、自主學(xué)習(xí)
(1)學(xué)生自主學(xué)習(xí)本節(jié)內(nèi)容,整體感知,圈點(diǎn)出難點(diǎn)疑點(diǎn)。
(2)大膽猜想:
你能寫(xiě)出“平行四邊形的兩組對(duì)邊分別相等”的逆命題嗎?猜想這個(gè)命題是真命題還是假命題?
活動(dòng)結(jié)果:根據(jù)上一章所學(xué)習(xí)的逆命題定義,學(xué)生獨(dú)立寫(xiě)出,進(jìn)行大膽猜想。
二、合作交流,實(shí)驗(yàn)操作(多媒體課件演示)
請(qǐng)同學(xué)們拿出自己準(zhǔn)備好的四段木條,四個(gè)同學(xué)一組活動(dòng),觀察思考。
問(wèn)題:
(一)、這四段木條能拼成一個(gè)平行四邊形嗎?
(二)、轉(zhuǎn)動(dòng)這個(gè)四邊形,改變它的形狀,它一直是一個(gè)平行四邊形嗎?
(三)、由此你可以得到什么結(jié)論?
活動(dòng):學(xué)生動(dòng)手操作,認(rèn)真觀察,精心交流,發(fā)表見(jiàn)解,得到結(jié)論,教師可以參與討論,指導(dǎo)點(diǎn)撥。
三、展示反饋
抽小組代表將上述討論結(jié)果展示給大家,實(shí)際操作,不足之處其他同學(xué)補(bǔ)充,教師多媒體演示,及時(shí)點(diǎn)撥,組織好學(xué)生。
學(xué)生明確:兩組對(duì)邊分別相等的四邊形是平行四邊形。
四、邏輯推理
你能用所學(xué)的知識(shí)證明上述的猜想成立嗎?
已知:如圖,在平行四邊形ABCD中,AD=BC,AB=CD。
求證:四邊形ABCD是平行四邊形。
抽學(xué)生代表展示:
證明:連結(jié)AC
∵AD=BC,AB=CD,AC=AC
∴△ABC≌△CDA(SSS)
∠1=∠2,∠3=∠4(全等三角形的性質(zhì))
∴AB∥CD,AD∥BC(內(nèi)錯(cuò)角相等,兩直線平行)
∴四邊形ABCD是平行四邊形(兩組對(duì)邊分別平行的四邊形是平行四邊形)
由此我們得出平行四邊形除定義之外,判定平行四邊形的方法一:
兩組對(duì)邊分別平行的四邊形是平行四邊形。
符號(hào)表示:
在四邊形ABCD中,∵AD∥BC,AB∥DC,∴四邊形ABCD是平行四邊形。
練習(xí)設(shè)計(jì):
1、已知: ABCD中,E,F分別是AB,CD的中點(diǎn)。
求證:四邊形AECF是平行四邊形。
2、已知:E、F是平行四邊形ABCD對(duì)角線AC上的兩點(diǎn),并且AE=CF。
求證:四邊形BFDE是平行四邊形
課堂小結(jié):
學(xué)生總結(jié):本節(jié)課的收獲,判定平行四邊形的方法:兩組對(duì)邊分別相等的四邊形是平行四邊形。
教師總結(jié):探索平行四邊形的判定方法的一般思路:逆命題猜想——操作驗(yàn)證——邏輯推理,提高自己的邏輯推理論證能力。
課后作業(yè):課后練習(xí)1、2。
設(shè)計(jì)說(shuō)明:
本節(jié)課在引入的環(huán)節(jié)上,采用復(fù)習(xí)引入的方式。首先復(fù)習(xí)了平行四邊形的定義和性質(zhì),喚起學(xué)生對(duì)已有知識(shí)的回憶,接著通過(guò)探究逆命題的真假直接引出本節(jié)課的學(xué)習(xí)內(nèi)容和任務(wù)。同時(shí),讓學(xué)生初步感受平行四邊形的性質(zhì)與判定的區(qū)別與聯(lián)系,為平行四邊形的性質(zhì)和判定的綜合運(yùn)用作了鋪墊。
知識(shí)的真正獲得不是靠知者的“告訴”,而是在于學(xué)習(xí)者的親身體驗(yàn)所得,本節(jié)課判定方法的得出都非常重視知識(shí)的發(fā)生、形成過(guò)程,讓學(xué)生親歷了類比、觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理的整個(gè)過(guò)程,培養(yǎng)學(xué)生的探究能力,發(fā)展學(xué)生的合情推理能力。
數(shù)學(xué)的學(xué)習(xí)要重視學(xué)習(xí)方法的指導(dǎo)。本節(jié)課通過(guò)由淺入深的練習(xí)和靈活的變式,引導(dǎo)學(xué)生善于抓住圖形的基本特征和題目的內(nèi)在聯(lián)系,達(dá)到觸類旁通的效果。
平行四邊形的判定教學(xué)設(shè)計(jì) 3
【學(xué)習(xí)目標(biāo)】
學(xué)法指導(dǎo):仔細(xì)閱讀,做到有的放矢。
【重點(diǎn)】
平行四邊形各種判定方法及其應(yīng)用,尤其是根據(jù)不同條件能正確地選擇判定方法.
【教學(xué)過(guò)程】
一、知識(shí)鏈接
1、用定義法證明一個(gè)四邊形是平行四邊形時(shí),要什么條件?
2、用所學(xué)的判定方法一判定一個(gè)四邊形的平行四邊形的條件是什么?
3、平行四邊形的一組對(duì)邊平行且相等的逆命題如何表達(dá)?是否是真命題?平行四邊形的兩組對(duì)角相等的逆命題如何表達(dá)?是否是真命題?
二、教材預(yù)習(xí)
學(xué)法指導(dǎo):課前獨(dú)學(xué)教材預(yù)習(xí)內(nèi)容,總結(jié)本節(jié)課的重點(diǎn)、難點(diǎn)、注意點(diǎn)。課堂再以小組為單位交流,找出還存在的問(wèn)題,并在小黑板上扼要展示本節(jié)重點(diǎn)內(nèi)容和存在的問(wèn)題。注意雙色筆的使用,書(shū)寫(xiě)工整。
1、預(yù)習(xí)內(nèi)容:自學(xué)課本88頁(yè)例4前,完成P90練習(xí)2。
2、預(yù)習(xí)測(cè)試:
從定義出發(fā)可知兩組對(duì)邊分別平行的四邊形是平行四邊形。除此之外,我們可以通過(guò)研究平行四邊形性質(zhì)定理的逆命題得到平行四邊形的其他判定方法:
判定定理3:
幾何語(yǔ)言為:
判定定理4:
幾何語(yǔ)言為:
4、用以前學(xué)過(guò)的知識(shí)證明:
合作探究
學(xué)法指導(dǎo):課前獨(dú)學(xué),解決會(huì)的,有問(wèn)題的上課對(duì)子或小組交流,形成共識(shí),進(jìn)行課堂大展示。展示時(shí)要講清所用知識(shí)點(diǎn)、易錯(cuò)點(diǎn)。展示到小黑板的題要標(biāo)清所用知識(shí)點(diǎn)、易錯(cuò)點(diǎn);注意雙色筆的使用,字體工整。
探究點(diǎn)一:判定定理3的應(yīng)用
平行四邊形判定方法3兩組對(duì)角分別相等的四邊形是平行四邊形。
下列條件中,能判斷四邊形ABCD是平行四邊形的'是()
。ˋ)AB∥CD,AD=BC(B)∠A=∠B,∠C=∠D
。–)∠A=∠C,∠B=∠D(D)AB=AD,CB=CD
探究點(diǎn)二:判定定理4的應(yīng)用
平行四邊形判定方法4一組對(duì)邊平行且相等的四邊形是平行四邊形。
已知:如圖,ABCD中,E、F分別是AC上兩點(diǎn),且BE⊥AC于E,DF⊥AC于F.求證:四邊形BEDF是平行四邊形.
變式:已知:如圖3,E、F是平行四邊形ABCD對(duì)角線AC上兩點(diǎn),且AE=CF。
求證:四邊形BFDE是平行四邊形。(你有幾種證明方法,對(duì)比之下使用什么方法較簡(jiǎn)便)
探究點(diǎn)三:判定的綜合應(yīng)用
在四邊形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.選擇兩個(gè)條件,能判定四邊形ABCD是平行四邊形的共有哪些結(jié)合方式.(共有9對(duì))
四、小結(jié)提升
學(xué)法指導(dǎo):1、對(duì)照學(xué)習(xí)目標(biāo)找差補(bǔ)缺。2、畫(huà)出知識(shí)樹(shù)。
通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲?你還有什么困惑?
畫(huà)知識(shí)樹(shù)
五、達(dá)標(biāo)測(cè)試
學(xué)法指導(dǎo):1、分層達(dá)標(biāo),敢于突破,橫向比較,找出差距。
2、完成較早的小組與同學(xué)把答案寫(xiě)到小黑板上獎(jiǎng)勵(lì)分5’
3、對(duì)子互改,組長(zhǎng)驗(yàn)收,教師查閱。
A、基礎(chǔ)達(dá)標(biāo)
1、判斷題:
(1)相鄰的兩個(gè)角都互補(bǔ)的四邊形是平行四邊形;()
。2)兩組對(duì)角分別相等的四邊形是平行四邊形;()
。3)一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形;()
(4)一組對(duì)邊平行且相等的四邊形是平行四邊形;()
。5)對(duì)角線相等的四邊形是平行四邊形;()
。6)對(duì)角線互相平分的四邊形是平行四邊形.()
2、延長(zhǎng)△ABC的中線AD至E,使DE=AD.求證:四邊形ABEC是平行四邊形.
B、能力測(cè)試
3、如圖,E、F是四邊形ABCD對(duì)角線AC上兩點(diǎn),AF=CE,DF∥BE,DF=BE。
求證:四邊形ABCD是平行四邊形。
4、已知:E、F分別為平行四邊形ABCD兩邊
AD、BC的中點(diǎn),連結(jié)BE、DF
求證:
C、拓展與提高
5、已知:在ABCD中,AE、CF分別是∠DAB、∠BCD的平分線.
求證:四邊形AFCE是平行四邊形.
平行四邊形的判定教學(xué)設(shè)計(jì) 4
一、 教學(xué)目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1.了解;方程算術(shù)解法與代數(shù)解法的區(qū)別。
2.掌握:代數(shù)解法解簡(jiǎn)易方程。
(二)能力訓(xùn)練點(diǎn)
1.通過(guò)代數(shù)解法解簡(jiǎn)易方程的 學(xué)習(xí) 使學(xué)生認(rèn)識(shí)問(wèn)題頭腦不僵化,培養(yǎng)其創(chuàng)造性思維的能力。
2.通過(guò)代數(shù)法解簡(jiǎn)易方程進(jìn)一步培養(yǎng)學(xué)生運(yùn)算能力和邏輯思維能力。
。ㄈ┑掠凉B透點(diǎn)
1.培養(yǎng)學(xué)生實(shí)事求是的科學(xué)態(tài)度,用發(fā)展的眼光看問(wèn)題的辯證唯物主義思想。
2.滲透化“未知”為“已知”的化歸思想。
。ㄋ模┟烙凉B透點(diǎn)
通過(guò)用新的方法解簡(jiǎn)易方程,使學(xué)生初步領(lǐng)略 數(shù)學(xué) 中的方法美。
二、學(xué)法引導(dǎo)
1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法。注意教學(xué)中民主意識(shí)和學(xué)生的主體作用的體現(xiàn)。
2.學(xué)生學(xué)法:識(shí)記→練習(xí)反饋
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):代數(shù)解法解簡(jiǎn)易方程。
2.難點(diǎn):解方程時(shí)準(zhǔn)確把握兩邊都加上(或減去)、乘以(或除以)同一適當(dāng)?shù)臄?shù)。
3.疑點(diǎn):代數(shù)解法解簡(jiǎn)易方程的依據(jù)。
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師創(chuàng)設(shè)情境,學(xué)生解決問(wèn)題。教師介紹新的方法,學(xué)生反復(fù)練習(xí)。
七、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
。ǔ鍪就队1)
引例:班上有37名同學(xué),分成人數(shù)相等的兩隊(duì)進(jìn)行拔河比賽,恰好余3人當(dāng)裁判員,每個(gè)隊(duì)有多少人?
師:該問(wèn)題如何解決呢?請(qǐng)同學(xué)們考慮好后寫(xiě)在練習(xí)本上.
學(xué)生活動(dòng):解答問(wèn)題,一個(gè)學(xué)生板演.
師生共同訂正,對(duì)照板演學(xué)生的做法,師問(wèn):有無(wú)不同解法?
學(xué)生活動(dòng):回答問(wèn)題,一個(gè)學(xué)生板演,其他學(xué)生比較兩種解法.
問(wèn);這兩種解法有什么不同呢?
學(xué)生活動(dòng):積極思索,回答問(wèn)題.(一是列算式的解法,二是列方程的解法).
師:很好.為了敘述問(wèn)題方便,我們分別把這兩種解法叫做算術(shù)解法和代數(shù)解法. 小學(xué) 學(xué)過(guò)的應(yīng)用題可用算術(shù)方法也可用代數(shù)方法解.有時(shí)算術(shù)方法簡(jiǎn)便,有時(shí)代數(shù)方法簡(jiǎn)便,但是隨著 學(xué)習(xí) 的逐步展開(kāi),遇到的問(wèn)題越來(lái)越復(fù)雜,使用代數(shù)解法的優(yōu)越性將會(huì)體現(xiàn)的越來(lái)越充分,因此,在初中代數(shù)課上,將把方程的知識(shí)作為一個(gè)重要的內(nèi)容來(lái) 學(xué)習(xí) .當(dāng)然,在開(kāi)始 學(xué)習(xí) 方程時(shí),還是要從簡(jiǎn)單的方程入手,即簡(jiǎn)易方程.引出課題.
[板書(shū)]1.5簡(jiǎn)易方程
。ǘ┨剿餍轮v授新課
師:談到方程,同學(xué)們并不陌生,你能說(shuō)明什么叫方程嗎?
學(xué)生活動(dòng):踴躍舉手,回答問(wèn)題。
[板書(shū)] 含有未知數(shù)的等式叫方程
接問(wèn):你還知道關(guān)于方程的其他概念嗎?
學(xué)生活動(dòng):積極思考并回答。
[板書(shū)] 方程的解;解方程
追問(wèn):能再具體些嗎?即什么叫方程的解?什么叫解方程?并舉例說(shuō)明.學(xué)生活動(dòng):互相討論后回答.(使方程左右兩邊相等的未知數(shù)的值叫做方程的解;求方程的解的過(guò)程叫解方程,例如方程: 是方程的解,求 的過(guò)程叫解方程.)
師:很好.怎樣解方程呢?
例如 解方程
學(xué)生活動(dòng):一個(gè)學(xué)生回答,師板書(shū),并要求學(xué)生說(shuō)出根據(jù)。
解:第一步 ,(把 看作一個(gè)數(shù),根據(jù)一個(gè)加數(shù)等于和減去另一個(gè)數(shù))
第二步 (根據(jù)一個(gè)因數(shù)等于積除以另一個(gè)因數(shù))
師:好!這是 小學(xué) 學(xué)的解方程的方法。在初中代數(shù)課上,我們要從另一角度來(lái)解,還以上邊這個(gè)方程為例。
[板書(shū)]
解:第一步看作方程兩邊都減去9,得
第二步看作方程兩邊都除以3,得
問(wèn):這種解法合理嗎?
學(xué)生活動(dòng):相互討論達(dá)成共識(shí)(合理。因把 代入方程 ,左邊=右邊,所以 是方程的解)
【教法說(shuō)明】先復(fù)習(xí) 小學(xué) 有關(guān)方程的幾個(gè)概念和解法,再提代數(shù)解法,形成對(duì)比,使學(xué)生認(rèn)識(shí)到同一問(wèn)題可從不同角度去考慮,即培養(yǎng)了發(fā)散思維。正是因?yàn)檎J(rèn)識(shí)問(wèn)題的不同側(cè)面,導(dǎo)致學(xué)生感到疑惑,這時(shí)讓學(xué)生自己去檢驗(yàn)新方法的合理性,不但可消除疑慮,而且還有助于發(fā)展學(xué)生的創(chuàng)造能力。
師:以前的方法只能解很簡(jiǎn)單的方程,而后者則可以解較復(fù)雜的方程,因此更為重要。為了更好的理解和熟悉這種解法,我們共同做例1。
。ㄈ﹪L試反饋,鞏固練習(xí)
例1 解方程
問(wèn):你認(rèn)為第一步方程兩邊應(yīng)加上(或減去)什么數(shù)最合適?為什么?
學(xué)生活動(dòng):思考并回答.(師板書(shū))
問(wèn):你認(rèn)為第二步方程兩邊應(yīng)乘以(或除以)什么數(shù)最合適?為什么?
學(xué)生活動(dòng):思考并回答(師板書(shū))
解:方程兩邊都加上5,得
,
方程兩邊都乘以2,得
,
x =32
問(wèn):這個(gè)結(jié)果正確嗎?請(qǐng)同學(xué)們自己檢驗(yàn).
學(xué)生活動(dòng):練習(xí)本上檢驗(yàn)并回答問(wèn)題.(正確)
師:這種新方法解方程時(shí),第一步目的是什么?第二步目的是什么?從而確定出該加上(或減去)怎樣的數(shù),該乘以(或除以)怎樣的數(shù)更合適.
學(xué)生活動(dòng):回答這兩個(gè)問(wèn)題.
【教法說(shuō)明】雖然解方程的過(guò)程由教師板書(shū),但整個(gè)思路是由學(xué)生形成的,使新方法在學(xué)生頭腦中越來(lái)越清晰,直到真正認(rèn)識(shí)并掌握它,這樣也體現(xiàn)了學(xué)生的主體性,由“學(xué)會(huì)”型向“會(huì)學(xué)”型轉(zhuǎn)化,對(duì)培養(yǎng)學(xué)生的思維能力很有幫助.
師:上題在我們共同努力下得以解決,下面看你們自己的表現(xiàn)怎樣?
例2? 解方程 。
學(xué)生活動(dòng):在練習(xí)本上做,一個(gè)學(xué)生板演.
師生共同訂正.
師:這里雖不要求同學(xué)們檢驗(yàn),但今后希望同學(xué)們養(yǎng)成自我檢查的.良好習(xí)慣.
【教法說(shuō)明】通過(guò)例2的教學(xué)訓(xùn)練學(xué)生的判斷能力及運(yùn)算能力,樹(shù)立矛盾轉(zhuǎn)化思想.
。ㄋ模┳兪接(xùn)練,培養(yǎng)能力
(出示投影2)
1.(口答)解下列方程
。1) ; (2) ;
2.判斷,并說(shuō)明理由
。1) 不是方程( )
。2) 與 的解都是 ( )
。3)不同方程的解一定不同( )
4.求 使 的值等于27。
學(xué)生活動(dòng):1、2題口答,3、4題在練習(xí)本上書(shū)寫(xiě),可互相討論,3、4題師巡回指導(dǎo)。
【教法說(shuō)明】1題讓學(xué)生困難同學(xué)回答,增強(qiáng)自信心;2題澄清模糊認(rèn)識(shí),可充分討論,讓學(xué)生各抒已見(jiàn);3題較1題稍復(fù)雜,一是讓學(xué)生體會(huì)新解法的優(yōu)越性,二是培養(yǎng)學(xué)生觀察分析解決問(wèn)題的能力;4題其實(shí)也是解方程,目的是開(kāi)闊學(xué)生思路,培養(yǎng)學(xué)生勇于探索、大膽求異的創(chuàng)新精神。
。ㄎ澹w納小結(jié)
。ㄓ蓪W(xué)生歸納)
1.按照新方法解方程,一般采用下面兩點(diǎn):
。1)方程兩邊都加上(或減去)同一適當(dāng)?shù)臄?shù);
。2)方程兩邊都乘以(或除以)同一適當(dāng)?shù)臄?shù)。
2.為了保證運(yùn)算準(zhǔn)確,養(yǎng)成檢驗(yàn)的習(xí)慣。
八、隨堂練習(xí)
1.選擇題
(1)在(1) ;(2) ;(3) ;(4) 中方程有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
。2)2是( )方程的解
A. B.
C. D.
2.解方程
3.求 ,使 與 互為倒數(shù)。
九、布置作業(yè)
(一)必做題:課本第31頁(yè)A組1.(2)(4)、 2.(1)(3)(5)
。ǘ┻x做題:思考課本B組1、2。
十、 板書(shū)設(shè)計(jì)
附:1.5? 簡(jiǎn)易方程
隨堂練習(xí)答案
1.B? C. 2. 3.
作業(yè)答案
探究活動(dòng)
甲、乙二人從相距30m的兩地同向而行,甲每秒走7m,乙每秒走6.5m,如果甲先出發(fā)1秒鐘后,乙才出發(fā),求甲出發(fā)后幾秒鐘追上乙?
解法(-)設(shè)甲出發(fā)后 秒追上乙,則甲走的路程為 m,乙比甲晚1秒鐘出發(fā),乙少走1秒鐘,此時(shí),乙走的路程為 m,甲追上乙表示甲比乙多走30m。根據(jù)題意列出方程是:
解得 (秒)
答:甲出發(fā)后47秒追上乙.
解法(二)設(shè)甲出發(fā)后 秒追上乙,甲先走1秒鐘,甲先走了 m,這樣甲追上己只需多走 (m).這時(shí)甲、乙二人都走了( )秒,甲走的路程為 m,乙走的路程為 m,乙比甲走的路程少 (m),根據(jù)題意列出方程是:
解得 (秒)
答:甲出發(fā)后47秒追上乙.
解法(三)設(shè)已出發(fā)后 秒,甲追上乙,因?yàn)榧紫茸?秒,所以甲走了 ,乙走了 秒,甲走的路程比已走的路程多30m,依據(jù)此等量關(guān)系列出方程為:
解得 秒
甲走的時(shí)間為 (秒)
答:甲出發(fā)后47秒追上乙.
平行四邊形的判定教學(xué)設(shè)計(jì) 5
一、 教學(xué)目標(biāo):
1.掌握用一組對(duì)邊平行且相等來(lái)判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的四種判定方法和性質(zhì)來(lái)證明問(wèn)題.
3.通過(guò)平行四邊形的性質(zhì)與判定的應(yīng)用,啟迪學(xué)生的思維,提高分析問(wèn)題的能力.
二、 重點(diǎn)、難點(diǎn)
1.重點(diǎn):平行四邊形各種判定方法及其應(yīng)用,尤其是根據(jù)不同條件能正確地選擇判定方法.
2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的綜合應(yīng)用.
三、例題的意圖分析
本節(jié)課的兩個(gè)例題都是補(bǔ)充的題目,目的是讓學(xué)生能掌握平行四邊形的第三種判定方法和會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.學(xué)生程度好一些的學(xué)校,可以適當(dāng)?shù)刈约涸傺a(bǔ)充一些題目,使同學(xué)們會(huì)應(yīng)用這些方法進(jìn)行幾何的推理證明,通過(guò)學(xué)習(xí),培養(yǎng)學(xué)生分析問(wèn)題、尋找最佳解題途徑的能力.
四、課堂引入
1. 平行四邊形的性質(zhì);
2. 平行四邊形的判定方法;
3. 【探究】 取兩根等長(zhǎng)的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?
結(jié)論:一組對(duì)邊平行且相等的四邊形是平行四邊形.
五、例習(xí)題分析
例1(補(bǔ)充)已知:如圖, ABCD中,E、F分別是AD、BC的中點(diǎn),求證:BE=DF.
分析:證明BE=DF,可以證明兩個(gè)三角形全等,也可以證明
四邊形BEDF是平行四邊形,比較方法,可以看出第二種方法簡(jiǎn)單.
證明:∵ 四邊形ABCD是平行四邊形,
AD∥CB,AD=CD.
∵ E、F分別是AD、BC的中點(diǎn),
DE∥BF,且DE= AD,BF= BC.
DE=BF.
四邊形BEDF是平行四邊形(一組對(duì)邊平行且相等的'四邊形平行四邊形).
BE=DF.
此題綜合運(yùn)用了平行四邊形的性質(zhì)和判定,先運(yùn)用平行四邊形的性質(zhì)得到判定另一個(gè)四邊形是平行四邊形的條件,再應(yīng)用平行四邊形的性質(zhì)得出結(jié)論;題目雖不復(fù)雜,但層次有三,且利用知識(shí)較多,因此應(yīng)使學(xué)生獲得清晰的證明思路.
例2(補(bǔ)充)已知:如圖, ABCD中,E、F分別是AC上兩點(diǎn),且BEAC于E,DFAC于F.求證:四邊形BEDF是平行四邊形.
分析:因?yàn)锽EAC于E,DFAC于F,所以BE∥DF.需再證明BE=DF,這需要證明△ABE與△CDF全等,由角角邊即可.
證明:∵ 四邊形ABCD是平行四邊形,
AB=CD,且AB∥CD.
BAE=DCF.
平行四邊形的判定教學(xué)設(shè)計(jì) 6
教學(xué)建議
1、重點(diǎn)平行四邊形的判定定理
重點(diǎn)分析平行四邊形的判定方法涉及平行四邊形元素的各方面,同時(shí)它又與平行四邊形的性質(zhì)聯(lián)系,判定一個(gè)四邊形是否為平行四邊形是利用平行四邊形性質(zhì)解決其他問(wèn)題的基礎(chǔ),所以平行四邊形的判定定理是本節(jié)的重點(diǎn)、
2、難點(diǎn)靈活運(yùn)用判定定理證明平行四邊形
難點(diǎn)分析平行四邊形的判定方法較多,綜合性較強(qiáng),能靈活的運(yùn)用判定定理證明平行四邊形,是本節(jié)的難點(diǎn)、
3、關(guān)于平行四邊形判定的教法建議
本節(jié)研究平行四邊形的判定方法,重點(diǎn)是四個(gè)判定定理,這也是本章的重點(diǎn)之一。
1、教科書(shū)首先指出,用定義可以判定平行四邊形、然后從平行四邊形的性質(zhì)定理的逆命題出發(fā),來(lái)探索平行四邊形的判定定理、因此在開(kāi)始的教學(xué)引入中,要充分調(diào)動(dòng)學(xué)生的情感因素,盡可能利用形式多樣的多媒體課件,激發(fā)學(xué)生興趣,使學(xué)生能很快參與進(jìn)來(lái)、
2、素質(zhì)教育的主旨是發(fā)揮學(xué)生的主體因素,讓學(xué)生自主獲取知識(shí)、本章重點(diǎn)中前三個(gè)判定定理的順序與它的性質(zhì)定理相對(duì)應(yīng),因此在講授新課時(shí),建議采用實(shí)驗(yàn)式教學(xué)模式或探索式教學(xué)模式:在證明每個(gè)判定定理時(shí),由學(xué)生自己去判斷命題成立與否,并根據(jù)過(guò)去所學(xué)知識(shí)去驗(yàn)證自己的結(jié)論,比較各種方法的優(yōu)劣,這樣使每個(gè)學(xué)生都積極參與到教學(xué)中,自己去實(shí)驗(yàn),去探索,去思考,去發(fā)現(xiàn),在動(dòng)手動(dòng)腦中得到的結(jié)論會(huì)更深刻――同時(shí)也要注意保護(hù)學(xué)生的參與積極性、
3、平行四邊形的判定方法較多,綜合性較強(qiáng),能靈活的運(yùn)用判定定理證明平行四邊形,是本節(jié)的難點(diǎn)、因此在例題講解時(shí),建議采用啟發(fā)式教學(xué)模式,根據(jù)題目中具體條件結(jié)合圖形引導(dǎo)學(xué)生根據(jù)分析法解題程序從條件或結(jié)論出發(fā),由學(xué)生自己去思考,去分析,充分發(fā)揮學(xué)生的主體作用,對(duì)學(xué)生靈活掌握熟練應(yīng)用各種判定定理會(huì)有幫助。
[教學(xué)目標(biāo)]
通過(guò)本節(jié)課教學(xué),使學(xué)生訓(xùn)練掌握平行四邊形的各條判定定理,并能靈活地運(yùn)用平行四邊形的性質(zhì)定理和判定定理及以前學(xué)過(guò)的知識(shí)進(jìn)行有關(guān)證明,培養(yǎng)學(xué)生的邏輯思維能力。
[教學(xué)過(guò)程]
一、準(zhǔn)備題系列
1、復(fù)習(xí)舊知識(shí):前面我們學(xué)習(xí)了平行四邊形的性質(zhì),哪位同學(xué)能敘述一下。(答對(duì)者記分,答錯(cuò)的另點(diǎn)同學(xué)補(bǔ)充)
2、小實(shí)驗(yàn):有一塊平行四喧形的玻璃片,假如不小心碰碎了解部分,同學(xué)們想想看,有沒(méi)有辦法把原來(lái)的平行四邊形重新畫(huà)出來(lái)?
(讓學(xué)生思考討論,再各自畫(huà)圖,畫(huà)好后互相交流畫(huà)法,教師巡回檢查。對(duì)個(gè)別差生稍加點(diǎn)撥,最后請(qǐng)學(xué)生回答畫(huà)圖方法)學(xué)生可能想到的'畫(huà)法有:
、欧謩e過(guò)A、C作DC、DA的平行線,兩平行線相交于B;
、七^(guò)C作DA的平行線,再在這平行線上截取CB=DA,連結(jié)BA;
、欠謩e以A、C為圓心,以DC、DA的長(zhǎng)為半徑畫(huà)弧,兩弧相交于B,連結(jié)AB、CB。
還有一種一法,學(xué)生不易想到,即由平行四邊形對(duì)角線的特性,引導(dǎo)學(xué)生得出連結(jié)AC,取AC的中點(diǎn)O,再連結(jié)DO,并延長(zhǎng)DO至B,使BO=DO,連結(jié)AB、CD。
二、引入新課
上面作出的四邊形是否都是平行四邊形呢?請(qǐng)同學(xué)們猜一猜。生答后師指出這就是今天所要不得研究的問(wèn)題“平行四邊形的判定”(板書(shū)課題)。
三、嘗試議練
1、要判定我們剛才畫(huà)出的四邊形是不是平行四邊形,應(yīng)當(dāng)加以證明。第一種畫(huà)法,由平行四邊形的定義可知,它是平行四邊形(定義可作性質(zhì)也可作判定)。
2、現(xiàn)在我們來(lái)看看第二種畫(huà)法,這就是平行四邊形判定定理一(翻開(kāi)課本看它的文字?jǐn)⑹觯U?qǐng)想想,一組對(duì)邊平行且相等的四邊形究竟是不是平行四邊形呢?這里已知是什么?求證是什么?請(qǐng)寫(xiě)出。
自學(xué)課本上的證明過(guò)程,看后提問(wèn):這個(gè)證明題不作輔助線行不行?為什么?(因?yàn)橐C平行線,一般要證兩角相等,或互補(bǔ),要證兩角相等,一般要證全等三角形,而這里沒(méi)有三角形,要連一對(duì)角線才有三角形)
3、再看第三種畫(huà)法,在兩組對(duì)邊分別相等的情況下是不是平行四邊形?教師寫(xiě)出已知、求證,請(qǐng)兩位學(xué)生上臺(tái)證明,其余在課堂練習(xí)本上做。(注意考慮要不要添輔助線)完成證明后提問(wèn)哪些學(xué)生是用判定定理一落千丈證明的?哪些是用定義證明的?(解題后思考)
四、變式練習(xí)
1、再看看第四種畫(huà)法,可知,已各條件是四邊形的對(duì)角線互相一平分,這種情況下它是不平行四邊形?
閱讀課本上的判定定理之后,要求學(xué)生思考用什么方法求證最簡(jiǎn)便?(應(yīng)該用判定定理一)
2、變式題
、艃山M對(duì)角分別相等的四邊形是不是平行四邊形?為什么?(練習(xí)第1題)(口述證明,不要示書(shū)面證明)(問(wèn)要不要添輔助線?)
⑵一組對(duì)邊平行,一組對(duì)角相等的四邊形是不是平行四邊形?(教師補(bǔ)充)
、且唤M對(duì)邊相等,一組對(duì)家相等及一組對(duì)邊相等,另一組對(duì)邊相等的四邊形是不是平行四邊形?(引導(dǎo)學(xué)生在草稿紙上畫(huà)圖思考,然后回答不是平行四邊形。因?yàn)檫吔遣荒茏C全等三角形)
、茸詫W(xué)課本例1思考:此例證明中,什么地方用了平行四邊形的“性質(zhì)”?什么地方用“判定”定理?
觀察下圖:
平行四邊形ABCD中,<A、<C的平行線分別交對(duì)邊于E和F,求證:AE=FC(怎樣證最簡(jiǎn)便?)
五、課堂小結(jié)
1、今天這節(jié)課我們學(xué)了什么?平行四這形的判定有哪些方法?試列舉之。
2、這些平行四邊形的判定方法中最基本的是哪一條?
3、平行四邊形的判定定理和性質(zhì)有什么關(guān)系?同一個(gè)證明題中應(yīng)注意什么地方用判定,什么地方性質(zhì)?
平行四邊形的判定教學(xué)設(shè)計(jì) 7
教學(xué)目標(biāo)
1.能解簡(jiǎn)易方程,并能用簡(jiǎn)易方程解簡(jiǎn)單的應(yīng)用題。
2.初步培養(yǎng)學(xué)生方程的思想及分析解決問(wèn)題的能力。
教學(xué)重點(diǎn) 和難點(diǎn)
重點(diǎn):簡(jiǎn)易方程的解法和根據(jù)實(shí)際問(wèn)題列出方程。
難點(diǎn):正確地列出方程。
課堂 教學(xué)過(guò)程 設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1.針對(duì)以往學(xué)過(guò)的一些知識(shí),教師請(qǐng)學(xué)生回答下列問(wèn)題:
(1)什么叫等式?等式的兩個(gè)性質(zhì)是什么?
(2)下列等式中x取什么數(shù)值時(shí),等式能夠成立?
2.在學(xué)生回答完上述問(wèn)題的基礎(chǔ)上,引出課題
在 小學(xué) 學(xué)習(xí) 方程時(shí),學(xué)生們已知有關(guān)方程的三個(gè)重要概念,即方程、方程的解和解方程.現(xiàn)在 學(xué)習(xí) 了等式之后,我們就可以更深刻、更全面 地理 解這些概念,并同時(shí)板書(shū)課題:簡(jiǎn)易方程.
二、講授新課
1.方程
在等式4+x=7中,我們將字母x稱為未知數(shù),或者說(shuō)是待定的數(shù).像這樣含有未知數(shù)的等式,稱為方程.并板書(shū)方程定義.
例1? (投影)判斷下列各式是否為方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說(shuō)明為什么.
(1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.
分析:本題在解答時(shí)需注意兩點(diǎn):
一是已知數(shù)應(yīng)包括它的符號(hào)在內(nèi);
二是未知數(shù)的系數(shù)若是1,這個(gè)省寫(xiě)的1也可看作已知數(shù).
(本題的解答應(yīng)由學(xué)生口述,教師利用投影片打出來(lái)完成)
2.簡(jiǎn)易方程
簡(jiǎn)易方程這一小節(jié)的前面主要是復(fù)習(xí)、歸納 小學(xué) 學(xué)過(guò)的 有關(guān)方程的基本知識(shí),提出了算術(shù)解法與代數(shù)解法的說(shuō)法,以便以后逐步講述代數(shù)解法的優(yōu)越性。
例2 解下列方程:
分析 方程(1)的'左邊需減去 ,根據(jù)等式的性質(zhì)(2),必須兩邊同時(shí)減去 ,得 ,方程的左邊需要乘以3,使 的系數(shù)化為1,根據(jù)等式的性質(zhì)(3),必須兩邊同時(shí)乘以3,得 ,方程(2)的解題思路與(1)類似。
解(1)方程兩邊都減去 ,得
兩邊都乘以3,得 。
。2)方程兩邊都加上6,得 。
方程兩邊都乘以 ,得 ,即 。
注意:(1)根據(jù)方程的解的概念,我們可以將所得結(jié)果代入原方程檢驗(yàn),如果左邊=右邊,說(shuō)明結(jié)果是正確的,否則,左邊≠右邊,說(shuō)明你求得的x的值,不是原方程的解,肯定計(jì)算有錯(cuò)誤,這時(shí),一定要細(xì)心檢查,或者再重解一遍.
(2)解簡(jiǎn)易方程時(shí),不要求寫(xiě)出檢驗(yàn)這一步.
例3 甲隊(duì)有54人,乙隊(duì)有66人,問(wèn)從甲隊(duì)調(diào)給乙隊(duì)幾人能使甲隊(duì)人數(shù)是乙隊(duì)人數(shù)的 ?
分析此題必須弄清:
一、甲、乙兩隊(duì)原來(lái)各有多少人;
二、變動(dòng)后甲、乙兩隊(duì)各有多少人(注意:甲隊(duì)減少的人數(shù)正是乙隊(duì)增加的人數(shù));
三、題中的等量關(guān)系是:
變動(dòng)后甲隊(duì)人數(shù)是乙隊(duì)人數(shù)的 ,即變動(dòng)后甲隊(duì)人數(shù)的3倍等于乙隊(duì)人數(shù).
解? 設(shè)從甲隊(duì)調(diào)給乙隊(duì)x人,
則變動(dòng)后甲隊(duì)有 人,乙隊(duì)有 人,根據(jù)題意,得:
答:從甲隊(duì)調(diào)給乙隊(duì)24人。
三、課堂練習(xí) (投影)
1.判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說(shuō)明為什么.
(1)3y-1=2y;? (2)3+4x+5x 2 ;? (3)7×8=8×7? (4)6=0.
2.根據(jù)條件列出方程:
(l)某數(shù)的一半比某數(shù)的3倍大4;
(2)某數(shù)比它的平方小42.
3.檢驗(yàn)下列各小題括號(hào)里的數(shù)是不是它前面的方程的解:
四、師生共同小結(jié)
1.請(qǐng)學(xué)生回答以下問(wèn)題:
(1)本節(jié)課 學(xué)習(xí) 了哪些內(nèi)容?
(2)方程與代數(shù)式,方程與等式的區(qū)別是什么?
(3)如何列方程?
2.教師在學(xué)生回答完上述問(wèn)題的基礎(chǔ)上,應(yīng)指出:
(1)方程、等式、代數(shù)式,這三者的定義是正確區(qū)分它們的唯一標(biāo)準(zhǔn);
(2)方程的解是一個(gè)數(shù)值(或幾個(gè)數(shù)值),它是使方程左、右兩邊的值相等的未知數(shù)的值它是根據(jù)未知數(shù)與已知數(shù)之間的相等關(guān)系確定的而解方程是指確定方程的解的過(guò)程,是一個(gè)變形過(guò)程.
五、作業(yè)
1.根據(jù)所給條件列出方程:
(1)某數(shù)與6的和的3倍等于21;
(2)某數(shù)的7倍比某數(shù)大5;
(3)某數(shù)與3的和的平方等于這數(shù)的15倍減去5;
(4)矩形的周長(zhǎng)是40,長(zhǎng)比寬多10,求矩形的長(zhǎng)與寬;
(5)三個(gè)連續(xù)整數(shù)之和為75,求這三個(gè)數(shù).
2.檢驗(yàn)下列各小題括號(hào)里的數(shù)是否是它前面的方程的解:
(3)x(x+1)=12,(x=3,x=4).
平行四邊形的判定教學(xué)設(shè)計(jì) 8
一、教學(xué)目標(biāo)
經(jīng)歷探索平行四邊形判別條件的過(guò)程,培養(yǎng)學(xué)生操作、觀察和說(shuō)理能力;掌握兩組對(duì)邊分別相等的四邊形是平行四邊形這一判別條件。
二、教材分析
本節(jié)課是在學(xué)生學(xué)習(xí)了平行四邊形的兩個(gè)判定定理之后即將學(xué)習(xí)的第三個(gè)判定定理——兩組對(duì)邊分別相等的四邊形是平行四邊形。
三、教學(xué)重難點(diǎn)
重點(diǎn):
探索并掌握平行四邊形的判別條件。
難點(diǎn):
對(duì)平行四邊形判別條件的理解及說(shuō)理的基本方法的掌握。
四、教學(xué)準(zhǔn)備
兩根長(zhǎng)40厘米 和兩根長(zhǎng)30厘米的木條
五、教學(xué)設(shè)計(jì)
首先復(fù)習(xí)平行四邊形的定義,然后通過(guò)學(xué)生活動(dòng)發(fā)現(xiàn)平行四邊形的另一判定定理,然后借助各種方法加以驗(yàn)證。最后依靠課本所設(shè)計(jì)的“做一做” ,“議一議” 以及“隨堂練習(xí)”加深對(duì)平行四邊形判定定理的理解。
六、教學(xué)過(guò)程
1、復(fù)習(xí)平行四邊形的定義。(旨在為證明一個(gè)四邊形是平行四邊形做鋪墊)
2、小組活動(dòng)
用兩根長(zhǎng)40厘米和兩根30厘米的木條作為四邊形的四條邊,能否拼成平行四邊形?與同伴進(jìn)行交流。 (通過(guò)小組活動(dòng),學(xué)生親自動(dòng)手操作,得出結(jié)論——當(dāng)兩組對(duì)邊相等時(shí),四邊形是平行四邊形;對(duì)邊不相等時(shí),所圍成的四邊形不是平行四邊形)。 平行四邊形的判定定理——兩組對(duì)邊相等的四邊形是平行四邊形。
3、課本91頁(yè)的“做一做” (其目的`是鞏固和應(yīng)用“兩組對(duì)邊相等的四邊形是平行四邊形”的判定定理。)
4、“議一議”
問(wèn)題1、一組對(duì)邊平行,另一組對(duì)邊相等的四邊形一定是平行四邊形嗎?說(shuō)說(shuō)你的想法。 (先鼓勵(lì)學(xué)生自主探索,再分組討論,最后全班交流得出正確結(jié)論)
問(wèn)題2、要判別一個(gè)四邊形是平行四邊形,你有哪些方法?
5、通過(guò)課本的“隨堂練習(xí)”,使學(xué)生對(duì)平行四邊形的判別條件加以應(yīng)用和鞏固
平行四邊形的判定教學(xué)設(shè)計(jì) 9
一、教學(xué)目標(biāo):
1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法。
2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題。
3.培養(yǎng)用類比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來(lái)研究問(wèn)題。
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):平行四邊形的判定方法及應(yīng)用。
2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用。
3.難點(diǎn)的突破方法:平行四邊形的判別方法是本節(jié)課的核心內(nèi)容。同時(shí)它又是后面進(jìn)一步研究矩形、菱形、正方形判別的基礎(chǔ),更是發(fā)展學(xué)生合情推理及說(shuō)理的良好素材。本節(jié)課的教學(xué)重點(diǎn)為平行四邊形的判別方法。在本課中,可以探索活動(dòng)為載體,并將論證作為探索活動(dòng)的自然延續(xù)與必要發(fā)展,從而將直觀操作與簡(jiǎn)單推理有機(jī)融合,達(dá)到突出重點(diǎn)、分散難點(diǎn)的目的。
。1)平行四邊形的判定方法1.2都是平行四邊形性質(zhì)的逆命題,它們的證明都可利用定義或前一個(gè)方法來(lái)證明。
。2)平行四邊形有四種判定方法,與性質(zhì)類似,可從邊、對(duì)角線兩方面進(jìn)行記憶。
要注意:
、俦窘滩臎](méi)有把用角來(lái)作為判定的方法,教學(xué)中可以根據(jù)學(xué)生的情況作為補(bǔ)充;
②本節(jié)課只介紹前兩個(gè)判定方法。
(3)教學(xué)中,我們可創(chuàng)設(shè)貼近學(xué)生生活、生動(dòng)有趣的問(wèn)題情境,開(kāi)展有效的數(shù)學(xué)活動(dòng),如通過(guò)欣賞圖片及識(shí)別圖片中的平行四邊形,使學(xué)生建立對(duì)平行四邊形的直覺(jué)認(rèn)識(shí)。并復(fù)習(xí)平行四邊形的定義,建立新舊知識(shí)間的相互聯(lián)系。接著提出問(wèn)題:小明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎?從而組織學(xué)生主動(dòng)參與、勤于動(dòng)手、積極思考,使他們?cè)谧灾魈骄颗c合作交流的過(guò)程中,從整體上把握“平行四邊形的判別”的方法。然后利用學(xué)生手中的學(xué)具——硬紙板條通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件。在學(xué)生拼圖的活動(dòng)中,教師可以以問(wèn)題串的形式展開(kāi)對(duì)平行四邊形判別方法的探討,讓學(xué)生在問(wèn)題解決中,實(shí)現(xiàn)對(duì)平行四邊形各種判別方法的掌握,并發(fā)展了學(xué)生說(shuō)理及簡(jiǎn)單推理的能力。
。4)從本節(jié)開(kāi)始,就應(yīng)讓學(xué)生直接運(yùn)用平行四邊形的性質(zhì)和判定去解決問(wèn)題,凡是可以用平行四邊形知識(shí)證明的問(wèn)題,不要再回到用三角形全等證明。應(yīng)該對(duì)學(xué)生提出這個(gè)要求。
(5)平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:
一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問(wèn)題。例如求角的度數(shù),線段的長(zhǎng)度,證明角相等或線段相等等;
二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問(wèn)題。
。6)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知識(shí),這些知識(shí)是本章的重點(diǎn)內(nèi)容,要使學(xué)生熟練地掌握這些知識(shí)。
三、例題的意圖分析
本節(jié)課安排了3個(gè)例題,例1是教材p96的例3,它是平行四邊形的性質(zhì)與判定的綜合運(yùn)用,此題最好先讓學(xué)生說(shuō)出證明的思路,然后老師總結(jié)并指出其最佳方法。例2與例3都是補(bǔ)充的題目,其目的就是讓學(xué)生能靈活和綜合地運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題。例3是一道拼圖題,教學(xué)時(shí),可以讓學(xué)生動(dòng)起來(lái),邊拼圖邊說(shuō)明道理,即可以提高學(xué)生的動(dòng)手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣。如讓學(xué)生再用四個(gè)不等邊三角形拼一個(gè)如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說(shuō)明理由。
四、課堂引入
1.欣賞圖片、提出問(wèn)題。展示圖片,提出問(wèn)題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?
2.【探究】:小明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎?讓學(xué)生利用手中的'學(xué)具——硬紙板條通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
(3)你能說(shuō)出你的做法及其道理嗎?
。4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?
。5)你還能找出其他方法嗎?從探究中得到:平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
五、例習(xí)題分析例
1(教材p96例3)已知:如圖abcd的對(duì)角線ac、bd交于點(diǎn)o,e、f是ac上的兩點(diǎn),并且ae=cf.求證:四邊形bfde是平行四邊形。分析:欲證四邊形bfde是平行四邊形可以根據(jù)判定方法
2來(lái)證明。(證明過(guò)程參看教材)問(wèn);你還有其它的證明方法嗎?比較一下,哪種證明方法簡(jiǎn)單。例2(補(bǔ)充)已知:如圖,a′b′∥ba,b′c′∥cb,c′a′∥ac.求證:(1) ∠abc=∠b′,∠cab=∠a′,∠bca=∠c′;(2) △abc的頂點(diǎn)分別是△b′c′a′各邊的中點(diǎn)。證明:(1) ∵ a′b′∥ba,c′b′∥bc,∴四邊形abcb′是平行四邊形!唷 蟖bc=∠b′(平行四邊形的對(duì)角相等).同理∠cab=∠a′,∠bca=∠c′.(2)由(1)證得四邊形abcb′是平行四邊形。同理,四邊形aba′c是平行四邊形! ab=b′c,ab=a′c(平行四邊形的對(duì)邊相等).∴ b′c=a′c.同理b′a=c′a,a′b=c′b.∴ △abc的頂點(diǎn)a、b、c分別是△b′c′a′的邊b′c′、c′a′、a′b′的中點(diǎn)。例3(補(bǔ)充)小明用手中六個(gè)全等的正三角形做拼圖游戲時(shí),拼成一個(gè)六邊形。你能在圖中找出所有的平行四邊形嗎?并說(shuō)說(shuō)你的理由。解:有6個(gè)平行四邊形,分別是abof,abco,bcdo,cdeo,defo,efao.理由是:因?yàn)檎鱝bo≌正△aof,所以ab=bo,of=fa.根據(jù)“兩組對(duì)邊分別相等的四邊形是平行四邊形”,可知四邊形abcd是平行四邊形。其它五個(gè)同理。
六、隨堂練習(xí)
如圖,在四邊形abcd中,ac、bd相交于點(diǎn)o。
。1)若ad=8cm,ab=4cm,那么當(dāng)bc=___ _cm,cd=___ _cm時(shí),四邊形abcd為平行四邊形;
。2)若ac=10cm,bd=8cm,那么當(dāng)ao=__ _cm,do=__ _cm時(shí),四邊形abcd為平行四邊形。
2.已知:如圖,abcd中,點(diǎn)e、f分別在cd、ab上,df∥be,ef交bd于點(diǎn)o.求證:eo=of.
3.靈活運(yùn)用課本p89例題,如圖:由火柴棒拼出的一列圖形,第n個(gè)圖形由(n+1)個(gè)等邊三角形拼成,通過(guò)觀察,分析發(fā)現(xiàn):
、俚4個(gè)圖形中平行四邊形的個(gè)數(shù)為_(kāi)__ __.(6個(gè))
②第8個(gè)圖形中平行四邊形的個(gè)數(shù)為_(kāi)__ __.(20個(gè))
七、課后練習(xí)
(選擇)下列條件中能判斷四邊形是平行四邊形的是()
1.(a)對(duì)角線互相垂直(b)對(duì)角線相等(c)對(duì)角線互相垂直且相等(d)對(duì)角線互相平分
2.已知:如圖,△abc,bd平分∠abc,de∥bc,ef∥bc,求證:be=cf19.1.2
平行四邊形的判定教學(xué)設(shè)計(jì) 10
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.
2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會(huì)根據(jù)簡(jiǎn)單的條件畫(huà)出平行四邊形,并說(shuō)明畫(huà)圖的依據(jù)是哪幾個(gè)定理.
(二)能力訓(xùn)練點(diǎn)
1.通過(guò)“探索式試明法”開(kāi)拓學(xué)生思路,發(fā)展學(xué)生思維能力.
2.通過(guò)教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問(wèn)題,解決問(wèn)題的能力.
(三)德育滲透點(diǎn)
通過(guò)一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.
。ㄋ模┟烙凉B透點(diǎn)
通過(guò)學(xué)習(xí),體會(huì)幾何證明的方法美.
二、學(xué)法引導(dǎo)
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用.
2.教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理.
3.疑點(diǎn)及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時(shí),在什么條件下用判定定理,在什么條件下用性質(zhì)定理(強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理,在已知平行四邊形時(shí)用性質(zhì)定理).
四、課時(shí)安排
2課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀,投影膠片,常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
復(fù)習(xí)引入,構(gòu)造逆命題,畫(huà)圖分析,討論證法,鞏固應(yīng)用.
七、教學(xué)步驟
【復(fù)習(xí)提問(wèn)】
1.平行四邊形有什么性質(zhì)?學(xué)生回答教師板書(shū)
2.將以上性質(zhì)定理分別用命題的形式敘述出來(lái).
【引入新課】
用投影儀打出上述命題的逆命題.
上述第一個(gè)逆命題顯然是正確的,因?yàn)樗褪瞧叫兴倪呅蔚亩x,所以它也是我們判定一個(gè)四邊形是否為平行四邊形的基本方法(定義法).
那么其它逆命題是否正確呢?如果正確就可得到另外的判定方法(寫(xiě)出命題).
【講解新課】
1.平行四邊形的判定
我們知道,平行四邊形的對(duì)角相等,反過(guò)來(lái)對(duì)角相等的四邊形是平行四邊形嗎?
如圖1,在四邊形中,如果,那么.
∴.
同理.
∴四邊形是平行四邊形,因此得到:
平行四邊形判定定理1:兩組對(duì)角分別相等的'四邊形是平行四邊形.
類似地,我們還會(huì)想到,兩組對(duì)邊相等的四邊形是平行四邊形嗎?
如圖1,如果,連結(jié),則△ ≌△得到,那么,則四邊形是平行四邊形.
由此得到:
平行四邊形判定定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形.
(判定定理1、2的證明采用了探索式的證明方法,即根據(jù)題設(shè)和已有知識(shí),經(jīng)過(guò)推理得出結(jié)論,然后總結(jié)成定理).
我們?cè)賮?lái)證明下面定理
平行四邊形判定定理3:對(duì)角線互相平分的四邊形是平行四邊形.
。ㄔ摱ɡ聿捎靡(guī)范證法,如圖1由學(xué)生自己證明,教師可引導(dǎo)學(xué)生用前面三種依據(jù)分別證明,借以鞏固所學(xué)知識(shí))
2.判定定理與性質(zhì)定理的區(qū)別與聯(lián)系
判定定理1、2、3分別是相應(yīng)性質(zhì)定理的逆定理,彼此之間分別為互逆定理,在使用時(shí)不得混淆.
例1已知:是對(duì)角線上兩點(diǎn),并且,如右圖.
求證:四邊形是平行四邊形.
分析:因?yàn)樗倪呅问瞧叫兴倪呅危詫?duì)邊平行且相等,由已知易證出兩組三角形全等,用定義或判定定理1、2都可以,還可以連結(jié)交于利用判定定理3簡(jiǎn)單.
證明:(由學(xué)生用各種方法證明,可以鞏固所學(xué)過(guò)的知識(shí)和作輔助線的方法,并比較各種證法的優(yōu)劣,從而獲得證題的技巧).
【總結(jié)、擴(kuò)展】
1.小結(jié):(投影打出)
。1)本堂課所講的判定定理有
。2)在今后解決平行四邊形問(wèn)題時(shí)要盡可能地運(yùn)用平行四邊形的相應(yīng)定理,不要總是依賴于全等三角形,否則不利于掌握新的知識(shí).
2.思考題
教材P144B.3
八、布置作業(yè)
教材P142中7;P143中8、9、10
九、板書(shū)設(shè)計(jì)
xxx
十、隨堂練習(xí)
教材P138中1、2
補(bǔ)充
1.下列給出了四邊形中、 、的度數(shù)之比,其中能判定四邊形是平行四邊形的是()
A.1:2:3:4 B.2:2:3:3
C.2:3:2:3 D.2:3:3:2
2.在下面給出的條件中,能判定四邊形是平行四邊形的是()
A.,B.,
C.,D.,
3.已知:在中,點(diǎn)、在對(duì)角線上,且.
求證:四邊形是平行四邊形.
平行四邊形的判定教學(xué)設(shè)計(jì) 11
教學(xué)目的:
1、深入了解平行四邊形的不穩(wěn)定性;
2、理解兩條平行線間的距離定義(區(qū)別于兩點(diǎn)間的距離、點(diǎn)到直線的距離)
3、熟練掌握平行四邊形的定義,平行四邊形性質(zhì)定理1、定理2及其推論、定理3和四個(gè)平行四邊形判定定理,并運(yùn)用它們進(jìn)行有關(guān)的論證和計(jì)算;
4、在教學(xué)中滲透事物總是相互聯(lián)系又相互區(qū)別的辨證唯物主義觀點(diǎn),體驗(yàn)“特殊--一般--特殊”的辨證唯物主義觀點(diǎn)。
教學(xué)重點(diǎn):
平行四邊形的性質(zhì)和判定。
教學(xué)難點(diǎn):
性質(zhì)、判定定理的運(yùn)用。
教學(xué)程序:
一、復(fù)習(xí)創(chuàng)情導(dǎo)入
平行四邊形的性質(zhì):
邊:對(duì)邊平行(定義);對(duì)邊相等(定理2);對(duì)角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對(duì)角相等(定理1);鄰角互補(bǔ)。
平行四邊形的判定:
邊:兩組 對(duì)邊平行(定義);兩組對(duì)邊相等(定理2);對(duì)角線互相平分(定理3);一組對(duì)邊平行且相等(定理4);兩組對(duì)角分別相等(定理1)
二、授新
1、提出問(wèn)題:平行四邊形有哪些性質(zhì):判定平行四邊形有哪些方法:
2、自學(xué)質(zhì)疑:自學(xué)課本P79-82頁(yè),并提出疑難問(wèn)題。
3、分組討論:討論自學(xué)中不能解決的問(wèn)題及學(xué)生提出問(wèn)題。
4、反饋歸納:根據(jù)預(yù)習(xí)和討論的效果,進(jìn)行點(diǎn)撥指導(dǎo)。
5、嘗試練習(xí):完成習(xí)題,解答疑難。
6、深化創(chuàng)新:平行四邊形的性質(zhì):
邊:對(duì)邊平行(定義);對(duì)邊相等(定理2);對(duì)角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對(duì)角相等(定理1);鄰角互補(bǔ)。
平行四邊形的判定:
邊:兩組 對(duì)邊平行(定義);兩組對(duì)邊相等(定理2);對(duì)角線互相平分(定理3);一組對(duì)邊平行且相等(定理4);兩組對(duì)角分別相等(定理1)
7、推薦作業(yè)
1、熟記“歸納整理的內(nèi)容”;
2、完成《練習(xí)卷》;
3、預(yù)習(xí):
(1)矩形的定義?
(2)矩形的性質(zhì)定理1、2及其推論的內(nèi)容是什么?
。3)怎樣證明?
。4)例1的解答過(guò)程中,運(yùn)用哪些性質(zhì)?
思考題
1、平行四邊形的性質(zhì)定理3的逆命題是否是真命題?根據(jù)題設(shè)和結(jié)論寫(xiě)出已 知求證;
2、如何證明性質(zhì)定理3的逆命題?
3、有幾種方法可以證明?
4、例2的`證明中,運(yùn)用了哪些性質(zhì)及判定?是否有其他方法?
5、例3的證明中,運(yùn)用了哪些性質(zhì)及判定?是否有其他方法?
跟蹤練習(xí)
1、在四邊形ABCD中,AC交BD 于點(diǎn)O,若AO=1/2AC,BO=1/2BD,則四邊形ABCD是平行四邊形。( )
2、在四邊形ABCD中,AC交BD 于點(diǎn)O,若OC= 且 ,則四邊形ABCD是平行四邊形。
3、下列條件中,能夠判斷一個(gè)四邊形是平行四邊形的是( )
。ˋ)一組對(duì)角相等; (B)對(duì)角線相等;
。–)兩條鄰邊相等; (D)對(duì)角線互相平分。
創(chuàng)新練習(xí)
已知,如圖,平行四邊形ABCD的AC和BD相交于O點(diǎn),經(jīng)過(guò)O點(diǎn)的直線交BC和AD于E、F,求證:四邊形BEDF是平行四邊形。(用兩種方法)
達(dá)標(biāo)練習(xí)
1、已知如圖,O為平行四邊形ABCD的對(duì)角線AC的中點(diǎn),EF經(jīng)過(guò)點(diǎn)O,且與AB交于E,與CD 交于F。求證:四邊形AECF是平行四邊形。
2、已知:如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,M、N分別是OA、OC的中點(diǎn),求證:BM∥DN,且BM=DN 。
綜合應(yīng)用練習(xí)
1、下列條件中,能做出平行四邊形的是( )
。ˋ)兩邊分別是4和5,一對(duì)角線為10;
(B)一邊為4,兩條對(duì)角線分別為2和5;
(C)一角為600,過(guò)此角的對(duì)角線為3,一邊為4;
。―)兩條對(duì)角線分別為3和5,他們所夾的銳角為450。
推薦作業(yè)
1、熟記“判定定理3”;
2、完成《練習(xí)卷》;
3、預(yù)習(xí):
(1)“平行四邊形的判定定理4”的內(nèi)容 是什么?
(2)怎樣證明?還有沒(méi)有其它證明方法?
。3)例4、例5還有哪些證明方法?
平行四邊形的判定教學(xué)設(shè)計(jì) 12
教學(xué)目的
1.使學(xué)生掌握用平行四邊形的定義判定一個(gè)四邊形是 平行四邊形;
2.理解并掌握用二組對(duì)邊分別相等的四邊形是平行四 邊形
3.能運(yùn)這兩種方法來(lái)證明一個(gè)四邊形是平行四邊形。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):平行四邊形的判定定理;
難點(diǎn):掌握平行四邊形的性 質(zhì)和判定的區(qū)別及熟練應(yīng)用。
教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)提問(wèn):
1. 什么 叫平行四邊形 ?平行四邊形有什么性質(zhì)?(學(xué)生口答,教師板書(shū))
2. 將 以上的性質(zhì)定理,分別用命題形式 敘述出來(lái)。(如果……那么……)
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來(lái)判定一個(gè)四邊形是平行四邊形呢?除了定義還有什么方法?平 行四邊形性質(zhì)定理的.逆命題是否成立?
。ǘ┬抡n
一.平行四邊形的判定:
方法一(定義法):兩組對(duì)邊分別平行的四邊形的平邊形。
幾何語(yǔ)言表達(dá)定義法:
∵AB∥C D,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個(gè)四邊形只要其兩組對(duì)邊 分別互相平行,
則可判定這個(gè)四邊形是一個(gè)平行四邊形。
活動(dòng):用做好的紙條拼成一個(gè)四邊形,其中強(qiáng)調(diào)兩組對(duì)邊分別相等。
方法二:兩組對(duì)邊分別相等的四邊形是平行四邊形。
設(shè)問(wèn):這個(gè)命題的前提和結(jié)論是什么?
已知:四邊形ABCD中,AB=CD,AD=BC
求 證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對(duì)邊分別平行,當(dāng)然是借助第三條直線證明角等。連結(jié)BD。易 證三角形全等。(見(jiàn)圖1)
板書(shū)證明過(guò)程。
小結(jié):用幾何語(yǔ)言 表達(dá)用定義法和剛才證明為正確的方法證明一個(gè)四邊形是平行四邊形的方法為:
判定一:二組對(duì)邊分別相等的四邊形是平行四邊形
∵AB=CD,AD=BC, ∴四邊形A BCD是平行四邊形
練習(xí):課本P103練習(xí)題第1題。
例題講解:
例1 已知:如圖3,E、F分別為平行四邊形ABCD兩邊AD、BC的中點(diǎn),連結(jié)BE、DF。
求證:
分析:由我們學(xué)過(guò)平行四邊形的性質(zhì)中,對(duì)角相 等,得若證明四邊形EBFD為平行四邊形,便可得到 ,哪么如何證明該四邊形為平行邊形呢?可通過(guò)證 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分別為AD和BC的中點(diǎn)得ED=FB。
練習(xí):2. 已知如 圖7, E、F、G、H分別是平行四邊形ABCD的邊AB、BC、CD、DA上的點(diǎn),且AE=CG,BF=DH。
求證:四邊 形EFGH是平行四邊形。
平行四邊形的判定教學(xué)設(shè)計(jì) 13
一、教學(xué)目標(biāo)
【知識(shí)與技能】
通過(guò)平行四邊形的性質(zhì),理解并探索并掌握平行四邊形的判定條件,并能根據(jù)條件判定平行四邊形。
【過(guò)程與方法】
經(jīng)歷平行四邊形判別條件的探索過(guò)程,逐步掌握平行四邊形判定的基本方法;在與他人交流的過(guò)程中,能合理清晰地表達(dá)自己的思維過(guò)程。
【情感態(tài)度與價(jià)值觀】
主動(dòng)參與探索的活動(dòng)中,發(fā)展合情推理意識(shí)、主動(dòng)探究的習(xí)慣,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情和興趣。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】平行四邊形的判定方法。
【難點(diǎn)】平行四邊形判定方法的應(yīng)用。
三、教學(xué)過(guò)程
(一)導(dǎo)入新課
出示下圖:學(xué)生觀察下圖,并提出下列問(wèn)題。
提問(wèn):1.上圖是什么圖形呢?回憶平行四邊形的定義,并從邊、角、對(duì)角線、對(duì)稱性四個(gè)角度回憶平行四邊形的性質(zhì)?
2.我們可以說(shuō)怎么樣的一個(gè)圖形是平行四邊形呢?除定義之外還有沒(méi)有其它的方法來(lái)判定一個(gè)四邊形是平行四邊形呢?
(二)生成新知
通過(guò)前面的學(xué)習(xí),我們知道,平行四邊形的對(duì)邊相等,對(duì)角相等,對(duì)角線互相平分。那么反過(guò)來(lái),對(duì)邊相等或?qū)蔷互相平分的四邊形是不是平行四邊形呢?下面我們就來(lái)驗(yàn)證一下。
實(shí)驗(yàn)一:取兩長(zhǎng)兩短的四根木條用小釘絞和在一起,做成一個(gè)四邊形,使等長(zhǎng)的木條成為對(duì)邊。轉(zhuǎn)動(dòng)這個(gè)四邊形,使它形狀改變,在圖形變化的過(guò)程中,它是什么圖形呢?體制都是平行四邊形嗎?
實(shí)驗(yàn)二:取兩根長(zhǎng)短不一的細(xì)木條,將它們的中點(diǎn)重疊,并用小釘釘在一起,用橡皮筋連接木條的頂點(diǎn),做成一個(gè)四邊形。轉(zhuǎn)動(dòng)兩根木條,這個(gè)四邊形是什么圖形呢?一直是一個(gè)平行四邊形嗎?
下面我們分組進(jìn)行實(shí)驗(yàn),一前后桌為一組的小組進(jìn)行分組討論,十分鐘的討論時(shí)間,小組需要的結(jié)合圖形回答下列問(wèn)題
提問(wèn)1:你能寫(xiě)出兩個(gè)實(shí)驗(yàn)中的已知條件和求證條件嗎?
提問(wèn)2:根據(jù)你寫(xiě)的已知條件,你能得到求證的條件嗎?
提問(wèn)3:通過(guò)上面的兩個(gè)問(wèn)題,最后你得到什么結(jié)論呢?
引導(dǎo)學(xué)生總結(jié)歸納出結(jié)論:
兩組對(duì)邊分別相等的四邊形為平行四邊形;
兩組對(duì)角線分別相等的.四邊形為平行四邊形;
對(duì)角線互相平分的四邊形是平行四邊形。
出示例題,通過(guò)對(duì)角線互相平分的四邊形的平行四邊形的是平行四邊形為例,講解并驗(yàn)證:
如圖所示,在四邊形ABCD中,AC,BD相交于點(diǎn)O,且OA=OC,OB=OD。求證:四邊形ABCD是平行四邊形。
引導(dǎo)學(xué)生總結(jié)歸納出具體解題步驟:
(三)應(yīng)用新知
1.在平行四邊形ABCD中,AC、BD相交于點(diǎn)O。
(1)若AD=8cm,AB=4cm,那么當(dāng)BC=_________cm,CD=________cm時(shí),四邊形ABCD為平行四邊形;
(2)若AC=10cm,BD=8cm,那么當(dāng)AO=________cm,DO=________cm時(shí),四邊形ABCD為平行四邊形。
(四)小結(jié)作業(yè)
小結(jié):通過(guò)這節(jié)課的學(xué)習(xí),你有什么收獲?你對(duì)今天的學(xué)習(xí)還有什么疑問(wèn)嗎?
作業(yè):想一想,平行四邊形還有哪些性質(zhì)?這些性質(zhì)定理的逆命題都可以證明是平行四邊形嗎?
平行四邊形的判定教學(xué)設(shè)計(jì) 14
教學(xué)目標(biāo)
知識(shí)技能目標(biāo)
1.運(yùn)用類比的方法,通過(guò)學(xué)生的合作探究,得出平行四邊形的判定方法.
2.理解平行四 邊形的這兩種判定方法,并學(xué)會(huì)簡(jiǎn)單運(yùn)用.
過(guò)程與方法目標(biāo)
1.經(jīng)歷平行四邊行判別條的探索過(guò)程,在有關(guān)活動(dòng)中發(fā)展學(xué)生的合情推理意識(shí).
2 .在運(yùn)用平行四邊形的判定方法解決問(wèn)題的過(guò)程中,進(jìn)一步培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力和推理論證的表達(dá)能力.
情感態(tài)度價(jià)值觀目標(biāo)
通過(guò)平行四邊形判別條的探索,培養(yǎng)學(xué)生面對(duì)挑戰(zhàn),勇于克服困難的意志,鼓勵(lì)學(xué)生大膽嘗試,從中獲得成功的體驗(yàn),激發(fā)學(xué)生的學(xué)習(xí)熱情.
教學(xué)重點(diǎn):
平行四邊形判定方法的探究、運(yùn)用.
教學(xué)難點(diǎn):
對(duì)平行四邊形判定方法的探究以及平行四邊形的性質(zhì)和判定的綜合運(yùn)用.
教學(xué)過(guò)程
第一環(huán)節(jié) 復(fù)習(xí)引入:
( 3分鐘, 教師提出問(wèn)題1,2,由學(xué)生獨(dú)立思考,并口答得出定義正反兩方面的作用,出平行四邊形的其他幾條性質(zhì).)
問(wèn)題1(多媒體展 示問(wèn)題)
1.平行四邊形的定義是什么?它有什么作用?
2.平 行四邊形還有哪些性質(zhì)?
問(wèn)題2
有一塊平行四邊形的玻璃塊,假如不小心碰碎了一部分,聰明的技師拿著細(xì)繩很快將原的平行四邊形畫(huà)了出,你知道他用的是什么方法嗎?
第二環(huán)節(jié) 探索活動(dòng)(12分鐘,學(xué)生動(dòng)手探究,小組合作)
活動(dòng)1:
工具:兩根長(zhǎng)度相等的筆,
兩條平行線(可利用橫格線).
動(dòng)手:請(qǐng)利用兩根長(zhǎng)度相等的筆和兩條平行線,擺出以筆頂端為頂點(diǎn)的平行四邊形嗎?
思考1.1:你能說(shuō)明你所擺出的四邊形是平行四邊形嗎?
思考1.2:以上活動(dòng)事實(shí),能用字語(yǔ)言表達(dá)嗎?
目的:
得出平行四邊形 的一個(gè)性質(zhì):一組對(duì)邊平行且相等的四邊形是平行四邊形.
活動(dòng)2
工具:兩根不同長(zhǎng)度的細(xì)紙條.
動(dòng)手:能否用這兩根細(xì)紙條在平面上
擺出平行四邊形?
思考2.1:你能說(shuō)明你們擺出的四邊形是平行四邊形嗎?
思考2.2:以上活動(dòng)事實(shí),能用字語(yǔ)言表達(dá)嗎?
目的:
得出平行四邊形的性質(zhì):對(duì)角線互相平分的四邊形是平行四邊形
第三環(huán)節(jié) 鞏固練習(xí)(20分鐘,學(xué)生思考討論再各自畫(huà)圖,畫(huà)好后互相交流畫(huà)法,教師巡回檢查.對(duì)個(gè)別學(xué)生稍加點(diǎn)撥)
隨堂練習(xí):
1.已知:在平行四邊形ABCD 中,點(diǎn)E、F在對(duì)角線AC上,并且OE=OF.
(1)OA與OC,OB與OD相等嗎?
(2)四邊形BFDE是平行四邊形嗎?
(3)若點(diǎn)E,F(xiàn)在OA,OC的中點(diǎn)上,你能解決上述問(wèn)題嗎?
2.再回到前問(wèn)題:同學(xué)們想想看,有沒(méi)有辦法把原的平行四邊形重新畫(huà)出?
(讓學(xué)生思考討論,再各自畫(huà)圖,畫(huà)好后互相 交流畫(huà)法,教師巡回檢查.對(duì)個(gè)別 學(xué)生稍加點(diǎn)撥,最后請(qǐng)學(xué)生回答畫(huà)圖方法)
學(xué)生想到的'畫(huà)法有:
(1)分別過(guò)A,C作BC,BA的平行線,兩平行線相交于D;
(2)分別以A,C為圓心,以BC, BA的長(zhǎng)為半徑畫(huà)弧,兩弧相交于D,連接AD,CD;
(3)這一種方法學(xué)生不易想到,即為平行四邊形對(duì)角線的特性,引導(dǎo)學(xué)生得出連線AC,取AC的中點(diǎn)O,再連接BO,并延長(zhǎng)BO到D,使BO=DO,連接AD,CD.
第四環(huán)節(jié) 小結(jié):(4分鐘,學(xué)生回答問(wèn)題)
師生共同小結(jié),主要圍繞下列幾個(gè)問(wèn)題:
。1)判定一個(gè)四邊形是平行四邊形的方法有哪幾種?這些方法是從什么角度去考慮的?
。2)我們是通過(guò)什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過(guò)程對(duì)你有什么啟發(fā)?
。3)類比、觀察、拼圖、實(shí)驗(yàn)等都是學(xué)習(xí)數(shù)學(xué)、發(fā)現(xiàn)結(jié)論的常用方法.
第五環(huán)節(jié) 布置 作業(yè):
B、C組(中等生和后三分之一生)本104頁(yè)習(xí)題4.3第1題、第2題
A組(優(yōu)等生):① 對(duì)于隨堂練習(xí)題,若將G,H分別在OB ,OD上移動(dòng)至與B,D重合,E,F(xiàn)分別在OA,OC上移動(dòng),使AE=CF(如圖),則結(jié)論還成立嗎?
、 對(duì)于隨堂練習(xí)題,若E,F(xiàn)繼續(xù)移動(dòng)至OA,OC的延長(zhǎng)線上,仍使AE=CF(如圖),則結(jié)論還成立嗎?
【平行四邊形的判定教學(xué)設(shè)計(jì)】相關(guān)文章:
《菱形的判定》教學(xué)設(shè)計(jì)04-30
《平行四邊形判定》教學(xué)反思05-06
《平行四邊形判定》教學(xué)反思范文10-11
平行四邊形的判定(一)教學(xué)反思04-28
《平行四邊形判定》教學(xué)反思7篇05-05
矩形的判定教學(xué)反思10-08
《切線判定》教學(xué)反思08-03
菱形的判定教學(xué)反思05-06